Cesium-Examples/examples/cesiumEx/ammolibs/ammo/ex/ConvexObjectBreaker.js

490 lines
15 KiB
JavaScript
Raw Normal View History

2025-03-11 08:25:45 +00:00
/**
* @author yomboprime https://github.com/yomboprime
*
* @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
*
* Usage:
*
* Use the function prepareBreakableObject to prepare a Mesh object to be broken.
*
* Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
*
* Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
*
* Requisites for the object:
*
* - Mesh object must have a Geometry (not BufferGeometry) and a Material
*
* - The Geometry must be convex (this is not tested in the library). You can create convex
* Geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
* can also be used.
*
* Note: This lib adds member variables to object's userData member and to its vertices.
* (see prepareBreakableObject function)
* Use with caution and read the code when using with other libs.
*
* @param {double} minSizeForBreak Min size a debris can have to break.
* @param {double} smallDelta Max distance to consider that a point belongs to a plane.
*
*/
THREE.ConvexObjectBreaker = function (minSizeForBreak, smallDelta) {
this.minSizeForBreak = minSizeForBreak || 1.4;
this.smallDelta = smallDelta || 0.0001;
this.tempLine1 = new THREE.Line3();
this.tempPlane1 = new THREE.Plane();
this.tempPlane2 = new THREE.Plane();
this.tempCM1 = new THREE.Vector3();
this.tempCM2 = new THREE.Vector3();
this.tempVector3 = new THREE.Vector3();
this.tempVector3_2 = new THREE.Vector3();
this.tempVector3_3 = new THREE.Vector3();
this.tempResultObjects = { object1: null, object2: null };
this.segments = [];
var n = 30 * 30;
for (var i = 0; i < n; i++) {
this.segments[i] = false;
}
};
THREE.ConvexObjectBreaker.prototype = {
constructor: THREE.ConvexObjectBreaker,
prepareBreakableObject: function (object, mass, velocity, angularVelocity, breakable) {
// object is a THREE.Object3d (normally a Mesh), must have a Geometry, and it must be convex.
// Its material property is propagated to its children (sub-pieces)
// mass must be > 0
// Create vertices mark
var geometry = object.geometry;
var vertices = geometry.vertices;
for (var i = 0, il = vertices.length; i < il; i++) {
vertices[i].mark = 0;
}
var userData = object.userData;
userData.mass = mass;
userData.velocity = velocity.clone();
userData.angularVelocity = angularVelocity.clone();
userData.breakable = breakable;
},
/*
* @param {int} maxRadialIterations Iterations for radial cuts.
* @param {int} maxRandomIterations Max random iterations for not-radial cuts
* @param {double} minSizeForRadialSubdivision Min size a debris can have to break in radial subdivision.
*
* Returns the array of pieces
*/
subdivideByImpact: function (object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations, minSizeForRadialSubdivision) {
var debris = [];
var tempPlane1 = this.tempPlane1;
var tempPlane2 = this.tempPlane2;
this.tempVector3.addVectors(pointOfImpact, normal);
tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3);
var maxTotalIterations = maxRandomIterations + maxRadialIterations;
var scope = this;
function subdivideRadial(subObject, startAngle, endAngle, numIterations) {
if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) {
debris.push(subObject);
return;
}
var angle = Math.PI;
if (numIterations === 0) {
tempPlane2.normal.copy(tempPlane1.normal);
tempPlane2.constant = tempPlane1.constant;
}
else {
if (numIterations <= maxRadialIterations) {
angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle;
// Rotate tempPlane2 at impact point around normal axis and the angle
scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact);
tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2);
}
else {
angle = ((0.5 * (numIterations & 1)) + 0.2 * (2 - Math.random())) * Math.PI;
// Rotate tempPlane2 at object position around normal axis and the angle
scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position);
scope.tempVector3_3.copy(normal).add(subObject.position);
tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2);
}
}
// Perform the cut
scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects);
var obj1 = scope.tempResultObjects.object1;
var obj2 = scope.tempResultObjects.object2;
if (obj1) {
subdivideRadial(obj1, startAngle, angle, numIterations + 1);
}
if (obj2) {
subdivideRadial(obj2, angle, endAngle, numIterations + 1);
}
}
subdivideRadial(object, 0, 2 * Math.PI, 0);
return debris;
},
cutByPlane: function (object, plane, output) {
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
// object2 can be null if the plane doesn't cut the object.
// object1 can be null only in case of internal error
// Returned value is number of pieces, 0 for error.
var geometry = object.geometry;
var points = geometry.vertices;
var faces = geometry.faces;
var numPoints = points.length;
var points1 = [];
var points2 = [];
var delta = this.smallDelta;
// Reset vertices mark
for (var i = 0; i < numPoints; i++) {
points[i].mark = 0;
}
// Reset segments mark
var numPointPairs = numPoints * numPoints;
for (var i = 0; i < numPointPairs; i++) {
this.segments[i] = false;
}
// Iterate through the faces to mark edges shared by coplanar faces
for (var i = 0, il = faces.length - 1; i < il; i++) {
var face1 = faces[i];
for (var j = i + 1, jl = faces.length; j < jl; j++) {
var face2 = faces[j];
var coplanar = 1 - face1.normal.dot(face2.normal) < delta;
if (coplanar) {
var a1 = face1.a;
var b1 = face1.b;
var c1 = face1.c;
var a2 = face2.a;
var b2 = face2.b;
var c2 = face2.c;
if (a1 === a2 || a1 === b2 || a1 === c2) {
if (b1 === a2 || b1 === b2 || b1 === c2) {
this.segments[a1 * numPoints + b1] = true;
this.segments[b1 * numPoints + a1] = true;
}
else {
this.segments[c1 * numPoints + a1] = true;
this.segments[a1 * numPoints + c1] = true;
}
}
else if (b1 === a2 || b1 === b2 || b1 === c2) {
this.segments[c1 * numPoints + b1] = true;
this.segments[b1 * numPoints + c1] = true;
}
}
}
}
// Transform the plane to object local space
var localPlane = this.tempPlane1;
THREE.ConvexObjectBreaker.transformPlaneToLocalSpace(plane, object.matrix, localPlane);
// Iterate through the faces adding points to both pieces
for (var i = 0, il = faces.length; i < il; i++) {
var face = faces[i];
for (var segment = 0; segment < 3; segment++) {
var i0 = segment === 0 ? face.a : (segment === 1 ? face.b : face.c);
var i1 = segment === 0 ? face.b : (segment === 1 ? face.c : face.a);
var segmentState = this.segments[i0 * numPoints + i1];
if (segmentState) {
// The segment already has been processed in another face
continue;
}
// Mark segment as processed (also inverted segment)
this.segments[i0 * numPoints + i1] = true;
this.segments[i1 * numPoints + i0] = true;
var p0 = points[i0];
var p1 = points[i1];
if (p0.mark === 0) {
var d = localPlane.distanceToPoint(p0);
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
if (d > delta) {
p0.mark = 2;
points2.push(p0);
}
else if (d < -delta) {
p0.mark = 1;
points1.push(p0);
}
else {
p0.mark = 3;
points1.push(p0);
var p0_2 = p0.clone();
p0_2.mark = 3;
points2.push(p0_2);
}
}
if (p1.mark === 0) {
var d = localPlane.distanceToPoint(p1);
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
if (d > delta) {
p1.mark = 2;
points2.push(p1);
}
else if (d < -delta) {
p1.mark = 1;
points1.push(p1);
}
else {
p1.mark = 3;
points1.push(p1);
var p1_2 = p1.clone();
p1_2.mark = 3;
points2.push(p1_2);
}
}
var mark0 = p0.mark;
var mark1 = p1.mark;
if ((mark0 === 1 && mark1 === 2) || (mark0 === 2 && mark1 === 1)) {
// Intersection of segment with the plane
this.tempLine1.start.copy(p0);
this.tempLine1.end.copy(p1);
var intersection = localPlane.intersectLine(this.tempLine1);
if (intersection === undefined) {
// Shouldn't happen
console.error("Internal error: segment does not intersect plane.");
output.segmentedObject1 = null;
output.segmentedObject2 = null;
return 0;
}
intersection.mark = 1;
points1.push(intersection);
var intersection_2 = intersection.clone();
intersection_2.mark = 2;
points2.push(intersection_2);
}
}
}
// Calculate debris mass (very fast and imprecise):
var newMass = object.userData.mass * 0.5;
// Calculate debris Center of Mass (again fast and imprecise)
this.tempCM1.set(0, 0, 0);
var radius1 = 0;
var numPoints1 = points1.length;
if (numPoints1 > 0) {
for (var i = 0; i < numPoints1; i++) {
this.tempCM1.add(points1[i]);
}
this.tempCM1.divideScalar(numPoints1);
for (var i = 0; i < numPoints1; i++) {
var p = points1[i];
p.sub(this.tempCM1);
radius1 = Math.max(radius1, p.x, p.y, p.z);
}
this.tempCM1.add(object.position);
}
this.tempCM2.set(0, 0, 0);
var radius2 = 0;
var numPoints2 = points2.length;
if (numPoints2 > 0) {
for (var i = 0; i < numPoints2; i++) {
this.tempCM2.add(points2[i]);
}
this.tempCM2.divideScalar(numPoints2);
for (var i = 0; i < numPoints2; i++) {
var p = points2[i];
p.sub(this.tempCM2);
radius2 = Math.max(radius2, p.x, p.y, p.z);
}
this.tempCM2.add(object.position);
}
var object1 = null;
var object2 = null;
var numObjects = 0;
if (numPoints1 > 4) {
object1 = new THREE.Mesh(new THREE.ConvexGeometry(points1), object.material);
object1.position.copy(this.tempCM1);
object1.quaternion.copy(object.quaternion);
this.prepareBreakableObject(object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak);
numObjects++;
}
if (numPoints2 > 4) {
object2 = new THREE.Mesh(new THREE.ConvexGeometry(points2), object.material);
object2.position.copy(this.tempCM2);
object2.quaternion.copy(object.quaternion);
this.prepareBreakableObject(object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak);
numObjects++;
}
output.object1 = object1;
output.object2 = object2;
return numObjects;
}
};
THREE.ConvexObjectBreaker.transformFreeVector = function (v, m) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
var x = v.x, y = v.y, z = v.z;
var e = m.elements;
v.x = e[0] * x + e[4] * y + e[8] * z;
v.y = e[1] * x + e[5] * y + e[9] * z;
v.z = e[2] * x + e[6] * y + e[10] * z;
return v;
};
THREE.ConvexObjectBreaker.transformFreeVectorInverse = function (v, m) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
var x = v.x, y = v.y, z = v.z;
var e = m.elements;
v.x = e[0] * x + e[1] * y + e[2] * z;
v.y = e[4] * x + e[5] * y + e[6] * z;
v.z = e[8] * x + e[9] * y + e[10] * z;
return v;
};
THREE.ConvexObjectBreaker.transformTiedVectorInverse = function (v, m) {
// input:
// vector interpreted as a tied (ordinary) vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
var x = v.x, y = v.y, z = v.z;
var e = m.elements;
v.x = e[0] * x + e[1] * y + e[2] * z - e[12];
v.y = e[4] * x + e[5] * y + e[6] * z - e[13];
v.z = e[8] * x + e[9] * y + e[10] * z - e[14];
return v;
};
THREE.ConvexObjectBreaker.transformPlaneToLocalSpace = function () {
var v1 = new THREE.Vector3();
var m1 = new THREE.Matrix3();
return function transformPlaneToLocalSpace(plane, m, resultPlane) {
resultPlane.normal.copy(plane.normal);
resultPlane.constant = plane.constant;
var referencePoint = THREE.ConvexObjectBreaker.transformTiedVectorInverse(plane.coplanarPoint(v1), m);
THREE.ConvexObjectBreaker.transformFreeVectorInverse(resultPlane.normal, m);
// recalculate constant (like in setFromNormalAndCoplanarPoint)
resultPlane.constant = -referencePoint.dot(resultPlane.normal);
};
}();