/** * @author yomboprime https://github.com/yomboprime * * @fileoverview This class can be used to subdivide a convex Geometry object into pieces. * * Usage: * * Use the function prepareBreakableObject to prepare a Mesh object to be broken. * * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane) * * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them. * * Requisites for the object: * * - Mesh object must have a Geometry (not BufferGeometry) and a Material * * - The Geometry must be convex (this is not tested in the library). You can create convex * Geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives * can also be used. * * Note: This lib adds member variables to object's userData member and to its vertices. * (see prepareBreakableObject function) * Use with caution and read the code when using with other libs. * * @param {double} minSizeForBreak Min size a debris can have to break. * @param {double} smallDelta Max distance to consider that a point belongs to a plane. * */ THREE.ConvexObjectBreaker = function (minSizeForBreak, smallDelta) { this.minSizeForBreak = minSizeForBreak || 1.4; this.smallDelta = smallDelta || 0.0001; this.tempLine1 = new THREE.Line3(); this.tempPlane1 = new THREE.Plane(); this.tempPlane2 = new THREE.Plane(); this.tempCM1 = new THREE.Vector3(); this.tempCM2 = new THREE.Vector3(); this.tempVector3 = new THREE.Vector3(); this.tempVector3_2 = new THREE.Vector3(); this.tempVector3_3 = new THREE.Vector3(); this.tempResultObjects = { object1: null, object2: null }; this.segments = []; var n = 30 * 30; for (var i = 0; i < n; i++) { this.segments[i] = false; } }; THREE.ConvexObjectBreaker.prototype = { constructor: THREE.ConvexObjectBreaker, prepareBreakableObject: function (object, mass, velocity, angularVelocity, breakable) { // object is a THREE.Object3d (normally a Mesh), must have a Geometry, and it must be convex. // Its material property is propagated to its children (sub-pieces) // mass must be > 0 // Create vertices mark var geometry = object.geometry; var vertices = geometry.vertices; for (var i = 0, il = vertices.length; i < il; i++) { vertices[i].mark = 0; } var userData = object.userData; userData.mass = mass; userData.velocity = velocity.clone(); userData.angularVelocity = angularVelocity.clone(); userData.breakable = breakable; }, /* * @param {int} maxRadialIterations Iterations for radial cuts. * @param {int} maxRandomIterations Max random iterations for not-radial cuts * @param {double} minSizeForRadialSubdivision Min size a debris can have to break in radial subdivision. * * Returns the array of pieces */ subdivideByImpact: function (object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations, minSizeForRadialSubdivision) { var debris = []; var tempPlane1 = this.tempPlane1; var tempPlane2 = this.tempPlane2; this.tempVector3.addVectors(pointOfImpact, normal); tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3); var maxTotalIterations = maxRandomIterations + maxRadialIterations; var scope = this; function subdivideRadial(subObject, startAngle, endAngle, numIterations) { if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) { debris.push(subObject); return; } var angle = Math.PI; if (numIterations === 0) { tempPlane2.normal.copy(tempPlane1.normal); tempPlane2.constant = tempPlane1.constant; } else { if (numIterations <= maxRadialIterations) { angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle; // Rotate tempPlane2 at impact point around normal axis and the angle scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact); tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2); } else { angle = ((0.5 * (numIterations & 1)) + 0.2 * (2 - Math.random())) * Math.PI; // Rotate tempPlane2 at object position around normal axis and the angle scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position); scope.tempVector3_3.copy(normal).add(subObject.position); tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2); } } // Perform the cut scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects); var obj1 = scope.tempResultObjects.object1; var obj2 = scope.tempResultObjects.object2; if (obj1) { subdivideRadial(obj1, startAngle, angle, numIterations + 1); } if (obj2) { subdivideRadial(obj2, angle, endAngle, numIterations + 1); } } subdivideRadial(object, 0, 2 * Math.PI, 0); return debris; }, cutByPlane: function (object, plane, output) { // Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut. // object2 can be null if the plane doesn't cut the object. // object1 can be null only in case of internal error // Returned value is number of pieces, 0 for error. var geometry = object.geometry; var points = geometry.vertices; var faces = geometry.faces; var numPoints = points.length; var points1 = []; var points2 = []; var delta = this.smallDelta; // Reset vertices mark for (var i = 0; i < numPoints; i++) { points[i].mark = 0; } // Reset segments mark var numPointPairs = numPoints * numPoints; for (var i = 0; i < numPointPairs; i++) { this.segments[i] = false; } // Iterate through the faces to mark edges shared by coplanar faces for (var i = 0, il = faces.length - 1; i < il; i++) { var face1 = faces[i]; for (var j = i + 1, jl = faces.length; j < jl; j++) { var face2 = faces[j]; var coplanar = 1 - face1.normal.dot(face2.normal) < delta; if (coplanar) { var a1 = face1.a; var b1 = face1.b; var c1 = face1.c; var a2 = face2.a; var b2 = face2.b; var c2 = face2.c; if (a1 === a2 || a1 === b2 || a1 === c2) { if (b1 === a2 || b1 === b2 || b1 === c2) { this.segments[a1 * numPoints + b1] = true; this.segments[b1 * numPoints + a1] = true; } else { this.segments[c1 * numPoints + a1] = true; this.segments[a1 * numPoints + c1] = true; } } else if (b1 === a2 || b1 === b2 || b1 === c2) { this.segments[c1 * numPoints + b1] = true; this.segments[b1 * numPoints + c1] = true; } } } } // Transform the plane to object local space var localPlane = this.tempPlane1; THREE.ConvexObjectBreaker.transformPlaneToLocalSpace(plane, object.matrix, localPlane); // Iterate through the faces adding points to both pieces for (var i = 0, il = faces.length; i < il; i++) { var face = faces[i]; for (var segment = 0; segment < 3; segment++) { var i0 = segment === 0 ? face.a : (segment === 1 ? face.b : face.c); var i1 = segment === 0 ? face.b : (segment === 1 ? face.c : face.a); var segmentState = this.segments[i0 * numPoints + i1]; if (segmentState) { // The segment already has been processed in another face continue; } // Mark segment as processed (also inverted segment) this.segments[i0 * numPoints + i1] = true; this.segments[i1 * numPoints + i0] = true; var p0 = points[i0]; var p1 = points[i1]; if (p0.mark === 0) { var d = localPlane.distanceToPoint(p0); // mark: 1 for negative side, 2 for positive side, 3 for coplanar point if (d > delta) { p0.mark = 2; points2.push(p0); } else if (d < -delta) { p0.mark = 1; points1.push(p0); } else { p0.mark = 3; points1.push(p0); var p0_2 = p0.clone(); p0_2.mark = 3; points2.push(p0_2); } } if (p1.mark === 0) { var d = localPlane.distanceToPoint(p1); // mark: 1 for negative side, 2 for positive side, 3 for coplanar point if (d > delta) { p1.mark = 2; points2.push(p1); } else if (d < -delta) { p1.mark = 1; points1.push(p1); } else { p1.mark = 3; points1.push(p1); var p1_2 = p1.clone(); p1_2.mark = 3; points2.push(p1_2); } } var mark0 = p0.mark; var mark1 = p1.mark; if ((mark0 === 1 && mark1 === 2) || (mark0 === 2 && mark1 === 1)) { // Intersection of segment with the plane this.tempLine1.start.copy(p0); this.tempLine1.end.copy(p1); var intersection = localPlane.intersectLine(this.tempLine1); if (intersection === undefined) { // Shouldn't happen console.error("Internal error: segment does not intersect plane."); output.segmentedObject1 = null; output.segmentedObject2 = null; return 0; } intersection.mark = 1; points1.push(intersection); var intersection_2 = intersection.clone(); intersection_2.mark = 2; points2.push(intersection_2); } } } // Calculate debris mass (very fast and imprecise): var newMass = object.userData.mass * 0.5; // Calculate debris Center of Mass (again fast and imprecise) this.tempCM1.set(0, 0, 0); var radius1 = 0; var numPoints1 = points1.length; if (numPoints1 > 0) { for (var i = 0; i < numPoints1; i++) { this.tempCM1.add(points1[i]); } this.tempCM1.divideScalar(numPoints1); for (var i = 0; i < numPoints1; i++) { var p = points1[i]; p.sub(this.tempCM1); radius1 = Math.max(radius1, p.x, p.y, p.z); } this.tempCM1.add(object.position); } this.tempCM2.set(0, 0, 0); var radius2 = 0; var numPoints2 = points2.length; if (numPoints2 > 0) { for (var i = 0; i < numPoints2; i++) { this.tempCM2.add(points2[i]); } this.tempCM2.divideScalar(numPoints2); for (var i = 0; i < numPoints2; i++) { var p = points2[i]; p.sub(this.tempCM2); radius2 = Math.max(radius2, p.x, p.y, p.z); } this.tempCM2.add(object.position); } var object1 = null; var object2 = null; var numObjects = 0; if (numPoints1 > 4) { object1 = new THREE.Mesh(new THREE.ConvexGeometry(points1), object.material); object1.position.copy(this.tempCM1); object1.quaternion.copy(object.quaternion); this.prepareBreakableObject(object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak); numObjects++; } if (numPoints2 > 4) { object2 = new THREE.Mesh(new THREE.ConvexGeometry(points2), object.material); object2.position.copy(this.tempCM2); object2.quaternion.copy(object.quaternion); this.prepareBreakableObject(object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak); numObjects++; } output.object1 = object1; output.object2 = object2; return numObjects; } }; THREE.ConvexObjectBreaker.transformFreeVector = function (v, m) { // input: // vector interpreted as a free vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[0] * x + e[4] * y + e[8] * z; v.y = e[1] * x + e[5] * y + e[9] * z; v.z = e[2] * x + e[6] * y + e[10] * z; return v; }; THREE.ConvexObjectBreaker.transformFreeVectorInverse = function (v, m) { // input: // vector interpreted as a free vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[0] * x + e[1] * y + e[2] * z; v.y = e[4] * x + e[5] * y + e[6] * z; v.z = e[8] * x + e[9] * y + e[10] * z; return v; }; THREE.ConvexObjectBreaker.transformTiedVectorInverse = function (v, m) { // input: // vector interpreted as a tied (ordinary) vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[0] * x + e[1] * y + e[2] * z - e[12]; v.y = e[4] * x + e[5] * y + e[6] * z - e[13]; v.z = e[8] * x + e[9] * y + e[10] * z - e[14]; return v; }; THREE.ConvexObjectBreaker.transformPlaneToLocalSpace = function () { var v1 = new THREE.Vector3(); var m1 = new THREE.Matrix3(); return function transformPlaneToLocalSpace(plane, m, resultPlane) { resultPlane.normal.copy(plane.normal); resultPlane.constant = plane.constant; var referencePoint = THREE.ConvexObjectBreaker.transformTiedVectorInverse(plane.coplanarPoint(v1), m); THREE.ConvexObjectBreaker.transformFreeVectorInverse(resultPlane.normal, m); // recalculate constant (like in setFromNormalAndCoplanarPoint) resultPlane.constant = -referencePoint.dot(resultPlane.normal); }; }();