mirror of
https://github.com/jiawanlong/Cesium-Examples.git
synced 2025-07-04 15:17:36 +00:00
506 lines
16 KiB
JavaScript
506 lines
16 KiB
JavaScript
// Extend the Array class
|
||
Array.prototype.max = function() {
|
||
return Math.max.apply(null, this);
|
||
};
|
||
Array.prototype.min = function() {
|
||
return Math.min.apply(null, this);
|
||
};
|
||
Array.prototype.mean = function() {
|
||
let i, sum;
|
||
for(i=0,sum=0;i<this.length;i++)
|
||
sum += this[i];
|
||
return sum / this.length;
|
||
};
|
||
Array.prototype.rep = function(n) {
|
||
return Array.apply(null, new Array(n))
|
||
.map(Number.prototype.valueOf, this[0]);
|
||
};
|
||
Array.prototype.pip = function(x, y) {
|
||
let i, j, c = false;
|
||
for(i=0,j=this.length-1;i<this.length;j=i++) {
|
||
if( ((this[i][1]>y) != (this[j][1]>y)) &&
|
||
(x<(this[j][0]-this[i][0]) * (y-this[i][1]) / (this[j][1]-this[i][1]) + this[i][0]) ) {
|
||
c = !c;
|
||
}
|
||
}
|
||
return c;
|
||
};
|
||
|
||
let kriging = {};
|
||
|
||
// Matrix algebra
|
||
var kriging_matrix_diag = function(c, n) {
|
||
let i, Z = [0].rep(n*n);
|
||
for(i=0;i<n;i++) Z[i*n+i] = c;
|
||
return Z;
|
||
};
|
||
var kriging_matrix_transpose = function(X, n, m) {
|
||
let i, j, Z = Array(m*n);
|
||
for(i=0;i<n;i++)
|
||
for(j=0;j<m;j++)
|
||
Z[j*n+i] = X[i*m+j];
|
||
return Z;
|
||
};
|
||
var kriging_matrix_scale = function(X, c, n, m) {
|
||
let i, j;
|
||
for(i=0;i<n;i++)
|
||
for(j=0;j<m;j++)
|
||
X[i*m+j] *= c;
|
||
};
|
||
var kriging_matrix_add = function(X, Y, n, m) {
|
||
let i, j, Z = Array(n*m);
|
||
for(i=0;i<n;i++)
|
||
for(j=0;j<m;j++)
|
||
Z[i*m+j] = X[i*m+j] + Y[i*m+j];
|
||
return Z;
|
||
};
|
||
// Naive matrix multiplication
|
||
var kriging_matrix_multiply = function(X, Y, n, m, p) {
|
||
let i, j, k, Z = Array(n*p);
|
||
for(i=0;i<n;i++) {
|
||
for(j=0;j<p;j++) {
|
||
Z[i*p+j] = 0;
|
||
for(k=0;k<m;k++)
|
||
Z[i*p+j] += X[i*m+k]*Y[k*p+j];
|
||
}
|
||
}
|
||
return Z;
|
||
};
|
||
// Cholesky decomposition
|
||
var kriging_matrix_chol = function(X, n) {
|
||
let i, j, k, sum, p = Array(n);
|
||
for(i=0;i<n;i++) p[i] = X[i*n+i];
|
||
for(i=0;i<n;i++) {
|
||
for(j=0;j<i;j++)
|
||
p[i] -= X[i*n+j]*X[i*n+j];
|
||
if(p[i]<=0) return false;
|
||
p[i] = Math.sqrt(p[i]);
|
||
for(j=i+1;j<n;j++) {
|
||
for(k=0;k<i;k++)
|
||
X[j*n+i] -= X[j*n+k]*X[i*n+k];
|
||
X[j*n+i] /= p[i];
|
||
}
|
||
}
|
||
for(i=0;i<n;i++) X[i*n+i] = p[i];
|
||
return true;
|
||
};
|
||
// Inversion of cholesky decomposition
|
||
var kriging_matrix_chol2inv = function(X, n) {
|
||
let i, j, k, sum;
|
||
for(i=0;i<n;i++) {
|
||
X[i*n+i] = 1/X[i*n+i];
|
||
for(j=i+1;j<n;j++) {
|
||
sum = 0;
|
||
for(k=i;k<j;k++)
|
||
sum -= X[j*n+k]*X[k*n+i];
|
||
X[j*n+i] = sum/X[j*n+j];
|
||
}
|
||
}
|
||
for(i=0;i<n;i++)
|
||
for(j=i+1;j<n;j++)
|
||
X[i*n+j] = 0;
|
||
for(i=0;i<n;i++) {
|
||
X[i*n+i] *= X[i*n+i];
|
||
for(k=i+1;k<n;k++)
|
||
X[i*n+i] += X[k*n+i]*X[k*n+i];
|
||
for(j=i+1;j<n;j++)
|
||
for(k=j;k<n;k++)
|
||
X[i*n+j] += X[k*n+i]*X[k*n+j];
|
||
}
|
||
for(i=0;i<n;i++)
|
||
for(j=0;j<i;j++)
|
||
X[i*n+j] = X[j*n+i];
|
||
|
||
};
|
||
// Inversion via gauss-jordan elimination
|
||
var kriging_matrix_solve = function(X, n) {
|
||
let m = n;
|
||
let b = Array(n*n);
|
||
let indxc = Array(n);
|
||
let indxr = Array(n);
|
||
let ipiv = Array(n);
|
||
let i, icol, irow, j, k, l, ll;
|
||
let big, dum, pivinv, temp;
|
||
|
||
for(i=0;i<n;i++)
|
||
for(j=0;j<n;j++) {
|
||
if(i==j) b[i*n+j] = 1;
|
||
else b[i*n+j] = 0;
|
||
}
|
||
for(j=0;j<n;j++) ipiv[j] = 0;
|
||
for(i=0;i<n;i++) {
|
||
big = 0;
|
||
for(j=0;j<n;j++) {
|
||
if(ipiv[j]!=1) {
|
||
for(k=0;k<n;k++) {
|
||
if(ipiv[k]==0) {
|
||
if(Math.abs(X[j*n+k])>=big) {
|
||
big = Math.abs(X[j*n+k]);
|
||
irow = j;
|
||
icol = k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
++(ipiv[icol]);
|
||
|
||
if(irow!=icol) {
|
||
for(l=0;l<n;l++) {
|
||
temp = X[irow*n+l];
|
||
X[irow*n+l] = X[icol*n+l];
|
||
X[icol*n+l] = temp;
|
||
}
|
||
for(l=0;l<m;l++) {
|
||
temp = b[irow*n+l];
|
||
b[irow*n+l] = b[icol*n+l];
|
||
b[icol*n+l] = temp;
|
||
}
|
||
}
|
||
indxr[i] = irow;
|
||
indxc[i] = icol;
|
||
|
||
if(X[icol*n+icol]==0) return false; // Singular
|
||
|
||
pivinv = 1 / X[icol*n+icol];
|
||
X[icol*n+icol] = 1;
|
||
for(l=0;l<n;l++) X[icol*n+l] *= pivinv;
|
||
for(l=0;l<m;l++) b[icol*n+l] *= pivinv;
|
||
|
||
for(ll=0;ll<n;ll++) {
|
||
if(ll!=icol) {
|
||
dum = X[ll*n+icol];
|
||
X[ll*n+icol] = 0;
|
||
for(l=0;l<n;l++) X[ll*n+l] -= X[icol*n+l]*dum;
|
||
for(l=0;l<m;l++) b[ll*n+l] -= b[icol*n+l]*dum;
|
||
}
|
||
}
|
||
}
|
||
for(l=(n-1);l>=0;l--)
|
||
if(indxr[l]!=indxc[l]) {
|
||
for(k=0;k<n;k++) {
|
||
temp = X[k*n+indxr[l]];
|
||
X[k*n+indxr[l]] = X[k*n+indxc[l]];
|
||
X[k*n+indxc[l]] = temp;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
// Variogram models
|
||
var kriging_variogram_gaussian = function(h, nugget, range, sill, A) {
|
||
return nugget + ((sill-nugget)/range)*
|
||
( 1.0 - Math.exp(-(1.0/A)*Math.pow(h/range, 2)) );
|
||
};
|
||
var kriging_variogram_exponential = function(h, nugget, range, sill, A) {
|
||
return nugget + ((sill-nugget)/range)*
|
||
( 1.0 - Math.exp(-(1.0/A) * (h/range)) );
|
||
};
|
||
var kriging_variogram_spherical = function(h, nugget, range, sill, A) {
|
||
if(h>range) return nugget + (sill-nugget)/range;
|
||
return nugget + ((sill-nugget)/range)*
|
||
( 1.5*(h/range) - 0.5*Math.pow(h/range, 3) );
|
||
};
|
||
|
||
// Train using gaussian processes with bayesian priors
|
||
kriging.train = function(t, x, y, model, sigma2, alpha) {
|
||
let variogram = {
|
||
t : t,
|
||
x : x,
|
||
y : y,
|
||
nugget : 0.0,
|
||
range : 0.0,
|
||
sill : 0.0,
|
||
A : 1/3,
|
||
n : 0
|
||
};
|
||
switch(model) {
|
||
case "gaussian":
|
||
variogram.model = kriging_variogram_gaussian;
|
||
break;
|
||
case "exponential":
|
||
variogram.model = kriging_variogram_exponential;
|
||
break;
|
||
case "spherical":
|
||
variogram.model = kriging_variogram_spherical;
|
||
break;
|
||
};
|
||
|
||
// Lag distance/semivariance
|
||
let i, j, k, l, n = t.length;
|
||
let distance = Array((n*n-n)/2);
|
||
for(i=0,k=0;i<n;i++)
|
||
for(j=0;j<i;j++,k++) {
|
||
distance[k] = Array(2);
|
||
distance[k][0] = Math.pow(
|
||
Math.pow(x[i]-x[j], 2)+
|
||
Math.pow(y[i]-y[j], 2), 0.5);
|
||
distance[k][1] = Math.abs(t[i]-t[j]);
|
||
}
|
||
distance.sort(function(a, b) { return a[0] - b[0]; });
|
||
variogram.range = distance[(n*n-n)/2-1][0];
|
||
|
||
// Bin lag distance
|
||
let lags = ((n*n-n)/2)>30?30:(n*n-n)/2;
|
||
let tolerance = variogram.range/lags;
|
||
let lag = [0].rep(lags);
|
||
let semi = [0].rep(lags);
|
||
if(lags<30) {
|
||
for(l=0;l<lags;l++) {
|
||
lag[l] = distance[l][0];
|
||
semi[l] = distance[l][1];
|
||
}
|
||
}
|
||
else {
|
||
for(i=0,j=0,k=0,l=0;i<lags&&j<((n*n-n)/2);i++,k=0) {
|
||
while( distance[j][0]<=((i+1)*tolerance) ) {
|
||
lag[l] += distance[j][0];
|
||
semi[l] += distance[j][1];
|
||
j++;k++;
|
||
if(j>=((n*n-n)/2)) break;
|
||
}
|
||
if(k>0) {
|
||
lag[l] /= k;
|
||
semi[l] /= k;
|
||
l++;
|
||
}
|
||
}
|
||
if(l<2) return variogram; // Error: Not enough points
|
||
}
|
||
|
||
// Feature transformation
|
||
n = l;
|
||
variogram.range = lag[n-1]-lag[0];
|
||
let X = [1].rep(2*n);
|
||
let Y = Array(n);
|
||
let A = variogram.A;
|
||
for(i=0;i<n;i++) {
|
||
switch(model) {
|
||
case "gaussian":
|
||
X[i*2+1] = 1.0-Math.exp(-(1.0/A)*Math.pow(lag[i]/variogram.range, 2));
|
||
break;
|
||
case "exponential":
|
||
X[i*2+1] = 1.0-Math.exp(-(1.0/A)*lag[i]/variogram.range);
|
||
break;
|
||
case "spherical":
|
||
X[i*2+1] = 1.5*(lag[i]/variogram.range)-
|
||
0.5*Math.pow(lag[i]/variogram.range, 3);
|
||
break;
|
||
};
|
||
Y[i] = semi[i];
|
||
}
|
||
|
||
// Least squares
|
||
let Xt = kriging_matrix_transpose(X, n, 2);
|
||
let Z = kriging_matrix_multiply(Xt, X, 2, n, 2);
|
||
Z = kriging_matrix_add(Z, kriging_matrix_diag(1/alpha, 2), 2, 2);
|
||
let cloneZ = Z.slice(0);
|
||
if(kriging_matrix_chol(Z, 2))
|
||
kriging_matrix_chol2inv(Z, 2);
|
||
else {
|
||
kriging_matrix_solve(cloneZ, 2);
|
||
Z = cloneZ;
|
||
}
|
||
let W = kriging_matrix_multiply(kriging_matrix_multiply(Z, Xt, 2, 2, n), Y, 2, n, 1);
|
||
|
||
// Variogram parameters
|
||
variogram.nugget = W[0];
|
||
variogram.sill = W[1]*variogram.range+variogram.nugget;
|
||
variogram.n = x.length;
|
||
|
||
// Gram matrix with prior
|
||
n = x.length;
|
||
let K = Array(n*n);
|
||
for(i=0;i<n;i++) {
|
||
for(j=0;j<i;j++) {
|
||
K[i*n+j] = variogram.model(Math.pow(Math.pow(x[i]-x[j], 2)+
|
||
Math.pow(y[i]-y[j], 2), 0.5),
|
||
variogram.nugget,
|
||
variogram.range,
|
||
variogram.sill,
|
||
variogram.A);
|
||
K[j*n+i] = K[i*n+j];
|
||
}
|
||
K[i*n+i] = variogram.model(0, variogram.nugget,
|
||
variogram.range,
|
||
variogram.sill,
|
||
variogram.A);
|
||
}
|
||
|
||
// Inverse penalized Gram matrix projected to target vector
|
||
let C = kriging_matrix_add(K, kriging_matrix_diag(sigma2, n), n, n);
|
||
let cloneC = C.slice(0);
|
||
if(kriging_matrix_chol(C, n))
|
||
kriging_matrix_chol2inv(C, n);
|
||
else {
|
||
kriging_matrix_solve(cloneC, n);
|
||
C = cloneC;
|
||
}
|
||
|
||
// Copy unprojected inverted matrix as K
|
||
var K_C = C.slice(0);
|
||
let M = kriging_matrix_multiply(C, t, n, n, 1);
|
||
variogram.K = K_C;
|
||
variogram.M = M;
|
||
|
||
return variogram;
|
||
};
|
||
|
||
// Model prediction
|
||
kriging.predict = function(x, y, variogram) {
|
||
let i, k = Array(variogram.n);
|
||
for(i=0;i<variogram.n;i++)
|
||
k[i] = variogram.model(Math.pow(Math.pow(x-variogram.x[i], 2)+
|
||
Math.pow(y-variogram.y[i], 2), 0.5),
|
||
variogram.nugget, variogram.range,
|
||
variogram.sill, variogram.A);
|
||
return kriging_matrix_multiply(k, variogram.M, 1, variogram.n, 1)[0];
|
||
};
|
||
kriging.variance = function(x, y, variogram) {
|
||
let i, k = Array(variogram.n);
|
||
for(i=0;i<variogram.n;i++)
|
||
k[i] = variogram.model(Math.pow(Math.pow(x-variogram.x[i], 2)+
|
||
Math.pow(y-variogram.y[i], 2), 0.5),
|
||
variogram.nugget, variogram.range,
|
||
variogram.sill, variogram.A);
|
||
return variogram.model(0, variogram.nugget, variogram.range,
|
||
variogram.sill, variogram.A)+
|
||
kriging_matrix_multiply(kriging_matrix_multiply(k, variogram.K,
|
||
1, variogram.n, variogram.n),
|
||
k, 1, variogram.n, 1)[0];
|
||
};
|
||
|
||
// Gridded matrices or contour paths
|
||
//OpenLayers的polygon:ol.geom.Polygon(coordinates, opt_layout)
|
||
kriging.grid = function(polygons, variogram, width) {
|
||
let i, j, k, n = polygons.length;
|
||
if(n==0) return;
|
||
|
||
// Boundaries of polygons space
|
||
let xlim = [polygons[0][0][0], polygons[0][0][0]];
|
||
let ylim = [polygons[0][0][1], polygons[0][0][1]];
|
||
for(i=0;i<n;i++) // Polygons
|
||
for(j=0;j<polygons[i].length;j++) { // Vertices
|
||
if(polygons[i][j][0]<xlim[0])
|
||
xlim[0] = polygons[i][j][0];
|
||
if(polygons[i][j][0]>xlim[1])
|
||
xlim[1] = polygons[i][j][0];
|
||
if(polygons[i][j][1]<ylim[0])
|
||
ylim[0] = polygons[i][j][1];
|
||
if(polygons[i][j][1]>ylim[1])
|
||
ylim[1] = polygons[i][j][1];
|
||
}
|
||
// Alloc for O(n^2) space
|
||
let xtarget, ytarget;
|
||
let a = Array(2), b = Array(2);
|
||
let lxlim = Array(2); // Local dimensions
|
||
let lylim = Array(2); // Local dimensions
|
||
let x = Math.ceil((xlim[1]-xlim[0])/width);//x方向上的格子数
|
||
let y = Math.ceil((ylim[1]-ylim[0])/width);//y方向上的格子数
|
||
|
||
let A = Array(x+1);
|
||
for(i=0;i<=x;i++) A[i] = Array(y+1);//A是一个二维矩阵
|
||
for(i=0;i<n;i++) {
|
||
// Range for polygons[i]
|
||
lxlim[0] = polygons[i][0][0];
|
||
lxlim[1] = lxlim[0];
|
||
lylim[0] = polygons[i][0][1];
|
||
lylim[1] = lylim[0];
|
||
for(j=1;j<polygons[i].length;j++) { // Vertices
|
||
if(polygons[i][j][0]<lxlim[0])
|
||
lxlim[0] = polygons[i][j][0];
|
||
if(polygons[i][j][0]>lxlim[1])
|
||
lxlim[1] = polygons[i][j][0];
|
||
if(polygons[i][j][1]<lylim[0])
|
||
lylim[0] = polygons[i][j][1];
|
||
if(polygons[i][j][1]>lylim[1])
|
||
lylim[1] = polygons[i][j][1];
|
||
}
|
||
|
||
// Loop through polygon subspace
|
||
a[0] = Math.floor(((lxlim[0]-((lxlim[0]-xlim[0])%width)) - xlim[0])/width);
|
||
a[1] = Math.ceil(((lxlim[1]-((lxlim[1]-xlim[1])%width)) - xlim[0])/width);
|
||
b[0] = Math.floor(((lylim[0]-((lylim[0]-ylim[0])%width)) - ylim[0])/width);
|
||
b[1] = Math.ceil(((lylim[1]-((lylim[1]-ylim[1])%width)) - ylim[0])/width);
|
||
for(j=a[0];j<=a[1];j++)
|
||
for(k=b[0];k<=b[1];k++) {
|
||
xtarget = xlim[0] + j*width;
|
||
ytarget = ylim[0] + k*width;
|
||
if(polygons[i].pip(xtarget, ytarget))
|
||
A[j][k] = kriging.predict(xtarget,
|
||
ytarget,
|
||
variogram);
|
||
}
|
||
}
|
||
A.xlim = xlim;
|
||
A.ylim = ylim;
|
||
A.zlim = [variogram.t.min(), variogram.t.max()];
|
||
A.width = width;
|
||
return A;
|
||
};
|
||
kriging.contour = function(value, polygons, variogram) {
|
||
return null;
|
||
};
|
||
|
||
// Plotting on the DOM
|
||
kriging.plot = function(canvas, grid, xlim, ylim, colors) {
|
||
// Clear screen
|
||
let ctx = canvas.getContext("2d");
|
||
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
||
|
||
// Starting boundaries
|
||
let range = [xlim[1]-xlim[0], ylim[1]-ylim[0], grid.zlim[1]-grid.zlim[0]];
|
||
let i, j, x, y, z;
|
||
let n = grid.length;
|
||
let m = grid[0].length;
|
||
let wx = Math.ceil(grid.width*canvas.width/(xlim[1]-xlim[0]));
|
||
let wy = Math.ceil(grid.width*canvas.height/(ylim[1]-ylim[0]));
|
||
for(i=0;i<n;i++)
|
||
for(j=0;j<m;j++) {
|
||
if(grid[i][j]==undefined) continue;
|
||
x = canvas.width*(i*grid.width+grid.xlim[0]-xlim[0])/range[0];
|
||
y = canvas.height*(1-(j*grid.width+grid.ylim[0]-ylim[0])/range[1]);
|
||
z = (grid[i][j]-grid.zlim[0])/range[2];
|
||
if(z<0.0) z = 0.0;
|
||
if(z>1.0) z = 1.0;
|
||
|
||
ctx.fillStyle = colors[Math.floor((colors.length-1)*z)];
|
||
ctx.fillRect(Math.round(x-wx/2), Math.round(y-wy/2), wx, wy);
|
||
}
|
||
};
|
||
|
||
kriging.plot_rainbow = function(canvas, grid, xlim, ylim, rainbow) {
|
||
// Clear screen
|
||
let ctx = canvas.getContext("2d");
|
||
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
||
|
||
// Starting boundaries
|
||
let range = [xlim[1]-xlim[0], ylim[1]-ylim[0], grid.zlim[1]-grid.zlim[0]];
|
||
let i, j, x, y, z;
|
||
let n = grid.length;
|
||
let m = grid[0].length;
|
||
let wx = Math.ceil(grid.width*canvas.width/(xlim[1]-xlim[0]));
|
||
let wy = Math.ceil(grid.width*canvas.height/(ylim[1]-ylim[0]));
|
||
for(i=0;i<n;i++)
|
||
for(j=0;j<m;j++) {
|
||
if(grid[i][j]==undefined) continue;
|
||
x = canvas.width*(i*grid.width+grid.xlim[0]-xlim[0])/range[0];
|
||
y = canvas.height*(1-(j*grid.width+grid.ylim[0]-ylim[0])/range[1]);
|
||
z = (grid[i][j]-grid.zlim[0])/range[2];
|
||
if(z<0.0) z = 0.0;
|
||
if(z>1.0) z = 1.0;
|
||
|
||
ctx.fillStyle ='#'+ rainbow.colourAt(z);
|
||
ctx.fillRect(Math.round(x-wx/2), Math.round(y-wy/2), wx, wy);
|
||
}
|
||
};
|
||
|
||
export default kriging;
|
||
|
||
/*
|
||
eg.
|
||
var variogram = K.kriging.train(values, lngs, lats, model, sigma2, alpha);
|
||
var grid = K.kriging.grid(_polygons, variogram, width);
|
||
K.kriging.plot(this.canvas, grid, [extent.xmin, extent.xmax], [extent.ymin, extent.ymax], colors);
|
||
*/ |