mirror of
https://github.com/jiawanlong/Cesium-Examples.git
synced 2025-07-04 15:17:36 +00:00
192 lines
6.1 KiB
JavaScript
192 lines
6.1 KiB
JavaScript
/**
|
||
* https://github.com/gre/bezier-easing
|
||
* BezierEasing - use bezier curve for transition easing function
|
||
* by Gaëtan Renaudeau 2014 - 2015 – MIT License
|
||
*
|
||
* https://github.com/manubb/Leaflet.PixiOverlay
|
||
*/
|
||
(function(f) {
|
||
if (typeof exports === 'object' && typeof module !== 'undefined') {
|
||
module.exports = f();
|
||
} else if (typeof define === 'function' && define.amd) {
|
||
define([], f);
|
||
} else {
|
||
var g;
|
||
if (typeof window !== 'undefined') {
|
||
g = window;
|
||
} else if (typeof global !== 'undefined') {
|
||
g = global;
|
||
} else if (typeof self !== 'undefined') {
|
||
g = self;
|
||
} else {
|
||
g = this;
|
||
}
|
||
g.BezierEasing = f();
|
||
}
|
||
})(function() {
|
||
var define, module, exports;
|
||
return (function() {
|
||
function r(e, n, t) {
|
||
function o(i, f) {
|
||
if (!n[i]) {
|
||
if (!e[i]) {
|
||
var c = 'function' == typeof require && require;
|
||
if (!f && c) return c(i, !0);
|
||
if (u) return u(i, !0);
|
||
var a = new Error("Cannot find module '" + i + "'");
|
||
throw ((a.code = 'MODULE_NOT_FOUND'), a);
|
||
}
|
||
var p = (n[i] = { exports: {} });
|
||
e[i][0].call(
|
||
p.exports,
|
||
function(r) {
|
||
var n = e[i][1][r];
|
||
return o(n || r);
|
||
},
|
||
p,
|
||
p.exports,
|
||
r,
|
||
e,
|
||
n,
|
||
t
|
||
);
|
||
}
|
||
return n[i].exports;
|
||
}
|
||
for (var u = 'function' == typeof require && require, i = 0; i < t.length; i++) o(t[i]);
|
||
return o;
|
||
}
|
||
return r;
|
||
})()(
|
||
{
|
||
1: [
|
||
function(require, module, exports) {
|
||
/**
|
||
* https://github.com/gre/bezier-easing
|
||
* BezierEasing - use bezier curve for transition easing function
|
||
* by Gaëtan Renaudeau 2014 - 2015 – MIT License
|
||
*/
|
||
|
||
// These values are established by empiricism with tests (tradeoff: performance VS precision)
|
||
var NEWTON_ITERATIONS = 4;
|
||
var NEWTON_MIN_SLOPE = 0.001;
|
||
var SUBDIVISION_PRECISION = 0.0000001;
|
||
var SUBDIVISION_MAX_ITERATIONS = 10;
|
||
|
||
var kSplineTableSize = 11;
|
||
var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
|
||
|
||
var float32ArraySupported = typeof Float32Array === 'function';
|
||
|
||
function A(aA1, aA2) {
|
||
return 1.0 - 3.0 * aA2 + 3.0 * aA1;
|
||
}
|
||
function B(aA1, aA2) {
|
||
return 3.0 * aA2 - 6.0 * aA1;
|
||
}
|
||
function C(aA1) {
|
||
return 3.0 * aA1;
|
||
}
|
||
|
||
// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
|
||
function calcBezier(aT, aA1, aA2) {
|
||
return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
|
||
}
|
||
|
||
// Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
|
||
function getSlope(aT, aA1, aA2) {
|
||
return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
|
||
}
|
||
|
||
function binarySubdivide(aX, aA, aB, mX1, mX2) {
|
||
var currentX,
|
||
currentT,
|
||
i = 0;
|
||
do {
|
||
currentT = aA + (aB - aA) / 2.0;
|
||
currentX = calcBezier(currentT, mX1, mX2) - aX;
|
||
if (currentX > 0.0) {
|
||
aB = currentT;
|
||
} else {
|
||
aA = currentT;
|
||
}
|
||
} while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
|
||
return currentT;
|
||
}
|
||
|
||
function newtonRaphsonIterate(aX, aGuessT, mX1, mX2) {
|
||
for (var i = 0; i < NEWTON_ITERATIONS; ++i) {
|
||
var currentSlope = getSlope(aGuessT, mX1, mX2);
|
||
if (currentSlope === 0.0) {
|
||
return aGuessT;
|
||
}
|
||
var currentX = calcBezier(aGuessT, mX1, mX2) - aX;
|
||
aGuessT -= currentX / currentSlope;
|
||
}
|
||
return aGuessT;
|
||
}
|
||
|
||
function LinearEasing(x) {
|
||
return x;
|
||
}
|
||
|
||
module.exports = function bezier(mX1, mY1, mX2, mY2) {
|
||
if (!(0 <= mX1 && mX1 <= 1 && 0 <= mX2 && mX2 <= 1)) {
|
||
throw new Error('bezier x values must be in [0, 1] range');
|
||
}
|
||
|
||
if (mX1 === mY1 && mX2 === mY2) {
|
||
return LinearEasing;
|
||
}
|
||
|
||
// Precompute samples table
|
||
var sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
|
||
for (var i = 0; i < kSplineTableSize; ++i) {
|
||
sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
|
||
}
|
||
|
||
function getTForX(aX) {
|
||
var intervalStart = 0.0;
|
||
var currentSample = 1;
|
||
var lastSample = kSplineTableSize - 1;
|
||
|
||
for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) {
|
||
intervalStart += kSampleStepSize;
|
||
}
|
||
--currentSample;
|
||
|
||
// Interpolate to provide an initial guess for t
|
||
var dist =
|
||
(aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]);
|
||
var guessForT = intervalStart + dist * kSampleStepSize;
|
||
|
||
var initialSlope = getSlope(guessForT, mX1, mX2);
|
||
if (initialSlope >= NEWTON_MIN_SLOPE) {
|
||
return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
|
||
} else if (initialSlope === 0.0) {
|
||
return guessForT;
|
||
} else {
|
||
return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2);
|
||
}
|
||
}
|
||
|
||
return function BezierEasing(x) {
|
||
// Because JavaScript number are imprecise, we should guarantee the extremes are right.
|
||
if (x === 0) {
|
||
return 0;
|
||
}
|
||
if (x === 1) {
|
||
return 1;
|
||
}
|
||
return calcBezier(getTForX(x), mY1, mY2);
|
||
};
|
||
};
|
||
},
|
||
{}
|
||
]
|
||
},
|
||
{},
|
||
[1]
|
||
)(1);
|
||
});
|