mirror of
				https://github.com/jiawanlong/Cesium-Examples.git
				synced 2025-11-04 09:14:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			222 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
import { Vector3 } from 'three';
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Generates 2D-Coordinates in a very fast way.
 | 
						|
 *
 | 
						|
 * Based on work by:
 | 
						|
 * @link http://www.openprocessing.org/sketch/15493
 | 
						|
 *
 | 
						|
 * @param center     Center of Hilbert curve.
 | 
						|
 * @param size       Total width of Hilbert curve.
 | 
						|
 * @param iterations Number of subdivisions.
 | 
						|
 * @param v0         Corner index -X, -Z.
 | 
						|
 * @param v1         Corner index -X, +Z.
 | 
						|
 * @param v2         Corner index +X, +Z.
 | 
						|
 * @param v3         Corner index +X, -Z.
 | 
						|
 */
 | 
						|
function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {
 | 
						|
 | 
						|
	const half = size / 2;
 | 
						|
 | 
						|
	const vec_s = [
 | 
						|
		new Vector3( center.x - half, center.y, center.z - half ),
 | 
						|
		new Vector3( center.x - half, center.y, center.z + half ),
 | 
						|
		new Vector3( center.x + half, center.y, center.z + half ),
 | 
						|
		new Vector3( center.x + half, center.y, center.z - half )
 | 
						|
	];
 | 
						|
 | 
						|
	const vec = [
 | 
						|
		vec_s[ v0 ],
 | 
						|
		vec_s[ v1 ],
 | 
						|
		vec_s[ v2 ],
 | 
						|
		vec_s[ v3 ]
 | 
						|
	];
 | 
						|
 | 
						|
	// Recurse iterations
 | 
						|
	if ( 0 <= -- iterations ) {
 | 
						|
 | 
						|
		return [
 | 
						|
			...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ),
 | 
						|
			...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ),
 | 
						|
			...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ),
 | 
						|
			...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 )
 | 
						|
		];
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	// Return complete Hilbert Curve.
 | 
						|
	return vec;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Generates 3D-Coordinates in a very fast way.
 | 
						|
 *
 | 
						|
 * Based on work by:
 | 
						|
 * @link https://openprocessing.org/user/5654
 | 
						|
 *
 | 
						|
 * @param center     Center of Hilbert curve.
 | 
						|
 * @param size       Total width of Hilbert curve.
 | 
						|
 * @param iterations Number of subdivisions.
 | 
						|
 * @param v0         Corner index -X, +Y, -Z.
 | 
						|
 * @param v1         Corner index -X, +Y, +Z.
 | 
						|
 * @param v2         Corner index -X, -Y, +Z.
 | 
						|
 * @param v3         Corner index -X, -Y, -Z.
 | 
						|
 * @param v4         Corner index +X, -Y, -Z.
 | 
						|
 * @param v5         Corner index +X, -Y, +Z.
 | 
						|
 * @param v6         Corner index +X, +Y, +Z.
 | 
						|
 * @param v7         Corner index +X, +Y, -Z.
 | 
						|
 */
 | 
						|
function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {
 | 
						|
 | 
						|
	// Default Vars
 | 
						|
	const half = size / 2;
 | 
						|
 | 
						|
	const vec_s = [
 | 
						|
		new Vector3( center.x - half, center.y + half, center.z - half ),
 | 
						|
		new Vector3( center.x - half, center.y + half, center.z + half ),
 | 
						|
		new Vector3( center.x - half, center.y - half, center.z + half ),
 | 
						|
		new Vector3( center.x - half, center.y - half, center.z - half ),
 | 
						|
		new Vector3( center.x + half, center.y - half, center.z - half ),
 | 
						|
		new Vector3( center.x + half, center.y - half, center.z + half ),
 | 
						|
		new Vector3( center.x + half, center.y + half, center.z + half ),
 | 
						|
		new Vector3( center.x + half, center.y + half, center.z - half )
 | 
						|
	];
 | 
						|
 | 
						|
	const vec = [
 | 
						|
		vec_s[ v0 ],
 | 
						|
		vec_s[ v1 ],
 | 
						|
		vec_s[ v2 ],
 | 
						|
		vec_s[ v3 ],
 | 
						|
		vec_s[ v4 ],
 | 
						|
		vec_s[ v5 ],
 | 
						|
		vec_s[ v6 ],
 | 
						|
		vec_s[ v7 ]
 | 
						|
	];
 | 
						|
 | 
						|
	// Recurse iterations
 | 
						|
	if ( -- iterations >= 0 ) {
 | 
						|
 | 
						|
		return [
 | 
						|
			...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ),
 | 
						|
			...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
 | 
						|
			...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
 | 
						|
			...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
 | 
						|
			...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
 | 
						|
			...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
 | 
						|
			...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
 | 
						|
			...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 )
 | 
						|
		];
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	// Return complete Hilbert Curve.
 | 
						|
	return vec;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Generates a Gosper curve (lying in the XY plane)
 | 
						|
 *
 | 
						|
 * https://gist.github.com/nitaku/6521802
 | 
						|
 *
 | 
						|
 * @param size The size of a single gosper island.
 | 
						|
 */
 | 
						|
function gosper( size = 1 ) {
 | 
						|
 | 
						|
	function fractalize( config ) {
 | 
						|
 | 
						|
		let output;
 | 
						|
		let input = config.axiom;
 | 
						|
 | 
						|
		for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
 | 
						|
 | 
						|
			output = '';
 | 
						|
 | 
						|
			for ( let j = 0, jl = input.length; j < jl; j ++ ) {
 | 
						|
 | 
						|
				const char = input[ j ];
 | 
						|
 | 
						|
				if ( char in config.rules ) {
 | 
						|
 | 
						|
					output += config.rules[ char ];
 | 
						|
 | 
						|
				} else {
 | 
						|
 | 
						|
					output += char;
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			input = output;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		return output;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	function toPoints( config ) {
 | 
						|
 | 
						|
		let currX = 0, currY = 0;
 | 
						|
		let angle = 0;
 | 
						|
		const path = [ 0, 0, 0 ];
 | 
						|
		const fractal = config.fractal;
 | 
						|
 | 
						|
		for ( let i = 0, l = fractal.length; i < l; i ++ ) {
 | 
						|
 | 
						|
			const char = fractal[ i ];
 | 
						|
 | 
						|
			if ( char === '+' ) {
 | 
						|
 | 
						|
				angle += config.angle;
 | 
						|
 | 
						|
			} else if ( char === '-' ) {
 | 
						|
 | 
						|
				angle -= config.angle;
 | 
						|
 | 
						|
			} else if ( char === 'F' ) {
 | 
						|
 | 
						|
				currX += config.size * Math.cos( angle );
 | 
						|
				currY += - config.size * Math.sin( angle );
 | 
						|
				path.push( currX, currY, 0 );
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		return path;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	//
 | 
						|
 | 
						|
	const gosper = fractalize( {
 | 
						|
		axiom: 'A',
 | 
						|
		steps: 4,
 | 
						|
		rules: {
 | 
						|
			A: 'A+BF++BF-FA--FAFA-BF+',
 | 
						|
			B: '-FA+BFBF++BF+FA--FA-B'
 | 
						|
		}
 | 
						|
	} );
 | 
						|
 | 
						|
	const points = toPoints( {
 | 
						|
		fractal: gosper,
 | 
						|
		size: size,
 | 
						|
		angle: Math.PI / 3 // 60 degrees
 | 
						|
	} );
 | 
						|
 | 
						|
	return points;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
export {
 | 
						|
	hilbert2D,
 | 
						|
	hilbert3D,
 | 
						|
	gosper,
 | 
						|
};
 |