mirror of
				https://github.com/jiawanlong/Cesium-Examples.git
				synced 2025-11-04 09:14:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			520 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
import {
 | 
						|
	Line3,
 | 
						|
	Mesh,
 | 
						|
	Plane,
 | 
						|
	Vector3
 | 
						|
} from 'three';
 | 
						|
import { ConvexGeometry } from '../geometries/ConvexGeometry.js';
 | 
						|
 | 
						|
/**
 | 
						|
 * @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
 | 
						|
 *
 | 
						|
 * Usage:
 | 
						|
 *
 | 
						|
 * Use the function prepareBreakableObject to prepare a Mesh object to be broken.
 | 
						|
 *
 | 
						|
 * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
 | 
						|
 *
 | 
						|
 * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
 | 
						|
 *
 | 
						|
 * Requisites for the object:
 | 
						|
 *
 | 
						|
 *  - Mesh object must have a buffer geometry and a material
 | 
						|
 *
 | 
						|
 *  - Vertex normals must be planar (not smoothed)
 | 
						|
 *
 | 
						|
 *  - The geometry must be convex (this is not checked in the library). You can create convex
 | 
						|
 *  geometries with ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
 | 
						|
 *  can also be used.
 | 
						|
 *
 | 
						|
 * Note: This lib adds member variables to object's userData member (see prepareBreakableObject function)
 | 
						|
 * Use with caution and read the code when using with other libs.
 | 
						|
 *
 | 
						|
 * @param {double} minSizeForBreak Min size a debris can have to break.
 | 
						|
 * @param {double} smallDelta Max distance to consider that a point belongs to a plane.
 | 
						|
 *
 | 
						|
*/
 | 
						|
 | 
						|
const _v1 = new Vector3();
 | 
						|
 | 
						|
class ConvexObjectBreaker {
 | 
						|
 | 
						|
	constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) {
 | 
						|
 | 
						|
		this.minSizeForBreak = minSizeForBreak;
 | 
						|
		this.smallDelta = smallDelta;
 | 
						|
 | 
						|
		this.tempLine1 = new Line3();
 | 
						|
		this.tempPlane1 = new Plane();
 | 
						|
		this.tempPlane2 = new Plane();
 | 
						|
		this.tempPlane_Cut = new Plane();
 | 
						|
		this.tempCM1 = new Vector3();
 | 
						|
		this.tempCM2 = new Vector3();
 | 
						|
		this.tempVector3 = new Vector3();
 | 
						|
		this.tempVector3_2 = new Vector3();
 | 
						|
		this.tempVector3_3 = new Vector3();
 | 
						|
		this.tempVector3_P0 = new Vector3();
 | 
						|
		this.tempVector3_P1 = new Vector3();
 | 
						|
		this.tempVector3_P2 = new Vector3();
 | 
						|
		this.tempVector3_N0 = new Vector3();
 | 
						|
		this.tempVector3_N1 = new Vector3();
 | 
						|
		this.tempVector3_AB = new Vector3();
 | 
						|
		this.tempVector3_CB = new Vector3();
 | 
						|
		this.tempResultObjects = { object1: null, object2: null };
 | 
						|
 | 
						|
		this.segments = [];
 | 
						|
		const n = 30 * 30;
 | 
						|
		for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {
 | 
						|
 | 
						|
		// object is a Object3d (normally a Mesh), must have a buffer geometry, and it must be convex.
 | 
						|
		// Its material property is propagated to its children (sub-pieces)
 | 
						|
		// mass must be > 0
 | 
						|
 | 
						|
		const userData = object.userData;
 | 
						|
		userData.mass = mass;
 | 
						|
		userData.velocity = velocity.clone();
 | 
						|
		userData.angularVelocity = angularVelocity.clone();
 | 
						|
		userData.breakable = breakable;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * @param {int} maxRadialIterations Iterations for radial cuts.
 | 
						|
	 * @param {int} maxRandomIterations Max random iterations for not-radial cuts
 | 
						|
	 *
 | 
						|
	 * Returns the array of pieces
 | 
						|
	 */
 | 
						|
	subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {
 | 
						|
 | 
						|
		const debris = [];
 | 
						|
 | 
						|
		const tempPlane1 = this.tempPlane1;
 | 
						|
		const tempPlane2 = this.tempPlane2;
 | 
						|
 | 
						|
		this.tempVector3.addVectors( pointOfImpact, normal );
 | 
						|
		tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );
 | 
						|
 | 
						|
		const maxTotalIterations = maxRandomIterations + maxRadialIterations;
 | 
						|
 | 
						|
		const scope = this;
 | 
						|
 | 
						|
		function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {
 | 
						|
 | 
						|
			if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {
 | 
						|
 | 
						|
				debris.push( subObject );
 | 
						|
 | 
						|
				return;
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			let angle = Math.PI;
 | 
						|
 | 
						|
			if ( numIterations === 0 ) {
 | 
						|
 | 
						|
				tempPlane2.normal.copy( tempPlane1.normal );
 | 
						|
				tempPlane2.constant = tempPlane1.constant;
 | 
						|
 | 
						|
			} else {
 | 
						|
 | 
						|
				if ( numIterations <= maxRadialIterations ) {
 | 
						|
 | 
						|
					angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;
 | 
						|
 | 
						|
					// Rotate tempPlane2 at impact point around normal axis and the angle
 | 
						|
					scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
 | 
						|
					tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );
 | 
						|
 | 
						|
				} else {
 | 
						|
 | 
						|
					angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;
 | 
						|
 | 
						|
					// Rotate tempPlane2 at object position around normal axis and the angle
 | 
						|
					scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
 | 
						|
					scope.tempVector3_3.copy( normal ).add( subObject.position );
 | 
						|
					tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			// Perform the cut
 | 
						|
			scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );
 | 
						|
 | 
						|
			const obj1 = scope.tempResultObjects.object1;
 | 
						|
			const obj2 = scope.tempResultObjects.object2;
 | 
						|
 | 
						|
			if ( obj1 ) {
 | 
						|
 | 
						|
				subdivideRadial( obj1, startAngle, angle, numIterations + 1 );
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			if ( obj2 ) {
 | 
						|
 | 
						|
				subdivideRadial( obj2, angle, endAngle, numIterations + 1 );
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		subdivideRadial( object, 0, 2 * Math.PI, 0 );
 | 
						|
 | 
						|
		return debris;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	cutByPlane( object, plane, output ) {
 | 
						|
 | 
						|
		// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
 | 
						|
		// object2 can be null if the plane doesn't cut the object.
 | 
						|
		// object1 can be null only in case of internal error
 | 
						|
		// Returned value is number of pieces, 0 for error.
 | 
						|
 | 
						|
		const geometry = object.geometry;
 | 
						|
		const coords = geometry.attributes.position.array;
 | 
						|
		const normals = geometry.attributes.normal.array;
 | 
						|
 | 
						|
		const numPoints = coords.length / 3;
 | 
						|
		let numFaces = numPoints / 3;
 | 
						|
 | 
						|
		let indices = geometry.getIndex();
 | 
						|
 | 
						|
		if ( indices ) {
 | 
						|
 | 
						|
			indices = indices.array;
 | 
						|
			numFaces = indices.length / 3;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		function getVertexIndex( faceIdx, vert ) {
 | 
						|
 | 
						|
			// vert = 0, 1 or 2.
 | 
						|
 | 
						|
			const idx = faceIdx * 3 + vert;
 | 
						|
 | 
						|
			return indices ? indices[ idx ] : idx;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		const points1 = [];
 | 
						|
		const points2 = [];
 | 
						|
 | 
						|
		const delta = this.smallDelta;
 | 
						|
 | 
						|
		// Reset segments mark
 | 
						|
		const numPointPairs = numPoints * numPoints;
 | 
						|
		for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;
 | 
						|
 | 
						|
		const p0 = this.tempVector3_P0;
 | 
						|
		const p1 = this.tempVector3_P1;
 | 
						|
		const n0 = this.tempVector3_N0;
 | 
						|
		const n1 = this.tempVector3_N1;
 | 
						|
 | 
						|
		// Iterate through the faces to mark edges shared by coplanar faces
 | 
						|
		for ( let i = 0; i < numFaces - 1; i ++ ) {
 | 
						|
 | 
						|
			const a1 = getVertexIndex( i, 0 );
 | 
						|
			const b1 = getVertexIndex( i, 1 );
 | 
						|
			const c1 = getVertexIndex( i, 2 );
 | 
						|
 | 
						|
			// Assuming all 3 vertices have the same normal
 | 
						|
			n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );
 | 
						|
 | 
						|
			for ( let j = i + 1; j < numFaces; j ++ ) {
 | 
						|
 | 
						|
				const a2 = getVertexIndex( j, 0 );
 | 
						|
				const b2 = getVertexIndex( j, 1 );
 | 
						|
				const c2 = getVertexIndex( j, 2 );
 | 
						|
 | 
						|
				// Assuming all 3 vertices have the same normal
 | 
						|
				n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );
 | 
						|
 | 
						|
				const coplanar = 1 - n0.dot( n1 ) < delta;
 | 
						|
 | 
						|
				if ( coplanar ) {
 | 
						|
 | 
						|
					if ( a1 === a2 || a1 === b2 || a1 === c2 ) {
 | 
						|
 | 
						|
						if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
 | 
						|
 | 
						|
							this.segments[ a1 * numPoints + b1 ] = true;
 | 
						|
							this.segments[ b1 * numPoints + a1 ] = true;
 | 
						|
 | 
						|
						}	else {
 | 
						|
 | 
						|
							this.segments[ c1 * numPoints + a1 ] = true;
 | 
						|
							this.segments[ a1 * numPoints + c1 ] = true;
 | 
						|
 | 
						|
						}
 | 
						|
 | 
						|
					}	else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
 | 
						|
 | 
						|
						this.segments[ c1 * numPoints + b1 ] = true;
 | 
						|
						this.segments[ b1 * numPoints + c1 ] = true;
 | 
						|
 | 
						|
					}
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		// Transform the plane to object local space
 | 
						|
		const localPlane = this.tempPlane_Cut;
 | 
						|
		object.updateMatrix();
 | 
						|
		ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane );
 | 
						|
 | 
						|
		// Iterate through the faces adding points to both pieces
 | 
						|
		for ( let i = 0; i < numFaces; i ++ ) {
 | 
						|
 | 
						|
			const va = getVertexIndex( i, 0 );
 | 
						|
			const vb = getVertexIndex( i, 1 );
 | 
						|
			const vc = getVertexIndex( i, 2 );
 | 
						|
 | 
						|
			for ( let segment = 0; segment < 3; segment ++ ) {
 | 
						|
 | 
						|
				const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc );
 | 
						|
				const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va );
 | 
						|
 | 
						|
				const segmentState = this.segments[ i0 * numPoints + i1 ];
 | 
						|
 | 
						|
				if ( segmentState ) continue; // The segment already has been processed in another face
 | 
						|
 | 
						|
				// Mark segment as processed (also inverted segment)
 | 
						|
				this.segments[ i0 * numPoints + i1 ] = true;
 | 
						|
				this.segments[ i1 * numPoints + i0 ] = true;
 | 
						|
 | 
						|
				p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );
 | 
						|
				p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] );
 | 
						|
 | 
						|
				// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
 | 
						|
				let mark0 = 0;
 | 
						|
 | 
						|
				let d = localPlane.distanceToPoint( p0 );
 | 
						|
 | 
						|
				if ( d > delta ) {
 | 
						|
 | 
						|
					mark0 = 2;
 | 
						|
					points2.push( p0.clone() );
 | 
						|
 | 
						|
				} else if ( d < - delta ) {
 | 
						|
 | 
						|
					mark0 = 1;
 | 
						|
					points1.push( p0.clone() );
 | 
						|
 | 
						|
				} else {
 | 
						|
 | 
						|
					mark0 = 3;
 | 
						|
					points1.push( p0.clone() );
 | 
						|
					points2.push( p0.clone() );
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
				// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
 | 
						|
				let mark1 = 0;
 | 
						|
 | 
						|
				d = localPlane.distanceToPoint( p1 );
 | 
						|
 | 
						|
				if ( d > delta ) {
 | 
						|
 | 
						|
					mark1 = 2;
 | 
						|
					points2.push( p1.clone() );
 | 
						|
 | 
						|
				} else if ( d < - delta ) {
 | 
						|
 | 
						|
					mark1 = 1;
 | 
						|
					points1.push( p1.clone() );
 | 
						|
 | 
						|
				}	else {
 | 
						|
 | 
						|
					mark1 = 3;
 | 
						|
					points1.push( p1.clone() );
 | 
						|
					points2.push( p1.clone() );
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
				if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) {
 | 
						|
 | 
						|
					// Intersection of segment with the plane
 | 
						|
 | 
						|
					this.tempLine1.start.copy( p0 );
 | 
						|
					this.tempLine1.end.copy( p1 );
 | 
						|
 | 
						|
					let intersection = new Vector3();
 | 
						|
					intersection = localPlane.intersectLine( this.tempLine1, intersection );
 | 
						|
 | 
						|
					if ( intersection === null ) {
 | 
						|
 | 
						|
						// Shouldn't happen
 | 
						|
						console.error( 'Internal error: segment does not intersect plane.' );
 | 
						|
						output.segmentedObject1 = null;
 | 
						|
						output.segmentedObject2 = null;
 | 
						|
						return 0;
 | 
						|
 | 
						|
					}
 | 
						|
 | 
						|
					points1.push( intersection );
 | 
						|
					points2.push( intersection.clone() );
 | 
						|
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		// Calculate debris mass (very fast and imprecise):
 | 
						|
		const newMass = object.userData.mass * 0.5;
 | 
						|
 | 
						|
		// Calculate debris Center of Mass (again fast and imprecise)
 | 
						|
		this.tempCM1.set( 0, 0, 0 );
 | 
						|
		let radius1 = 0;
 | 
						|
		const numPoints1 = points1.length;
 | 
						|
 | 
						|
		if ( numPoints1 > 0 ) {
 | 
						|
 | 
						|
			for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );
 | 
						|
 | 
						|
			this.tempCM1.divideScalar( numPoints1 );
 | 
						|
			for ( let i = 0; i < numPoints1; i ++ ) {
 | 
						|
 | 
						|
				const p = points1[ i ];
 | 
						|
				p.sub( this.tempCM1 );
 | 
						|
				radius1 = Math.max( radius1, p.x, p.y, p.z );
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			this.tempCM1.add( object.position );
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		this.tempCM2.set( 0, 0, 0 );
 | 
						|
		let radius2 = 0;
 | 
						|
		const numPoints2 = points2.length;
 | 
						|
		if ( numPoints2 > 0 ) {
 | 
						|
 | 
						|
			for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );
 | 
						|
 | 
						|
			this.tempCM2.divideScalar( numPoints2 );
 | 
						|
			for ( let i = 0; i < numPoints2; i ++ ) {
 | 
						|
 | 
						|
				const p = points2[ i ];
 | 
						|
				p.sub( this.tempCM2 );
 | 
						|
				radius2 = Math.max( radius2, p.x, p.y, p.z );
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			this.tempCM2.add( object.position );
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		let object1 = null;
 | 
						|
		let object2 = null;
 | 
						|
 | 
						|
		let numObjects = 0;
 | 
						|
 | 
						|
		if ( numPoints1 > 4 ) {
 | 
						|
 | 
						|
			object1 = new Mesh( new ConvexGeometry( points1 ), object.material );
 | 
						|
			object1.position.copy( this.tempCM1 );
 | 
						|
			object1.quaternion.copy( object.quaternion );
 | 
						|
 | 
						|
			this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );
 | 
						|
 | 
						|
			numObjects ++;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		if ( numPoints2 > 4 ) {
 | 
						|
 | 
						|
			object2 = new Mesh( new ConvexGeometry( points2 ), object.material );
 | 
						|
			object2.position.copy( this.tempCM2 );
 | 
						|
			object2.quaternion.copy( object.quaternion );
 | 
						|
 | 
						|
			this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );
 | 
						|
 | 
						|
			numObjects ++;
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		output.object1 = object1;
 | 
						|
		output.object2 = object2;
 | 
						|
 | 
						|
		return numObjects;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	static transformFreeVector( v, m ) {
 | 
						|
 | 
						|
		// input:
 | 
						|
		// vector interpreted as a free vector
 | 
						|
		// THREE.Matrix4 orthogonal matrix (matrix without scale)
 | 
						|
 | 
						|
		const x = v.x, y = v.y, z = v.z;
 | 
						|
		const e = m.elements;
 | 
						|
 | 
						|
		v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
 | 
						|
		v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
 | 
						|
		v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
 | 
						|
 | 
						|
		return v;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	static transformFreeVectorInverse( v, m ) {
 | 
						|
 | 
						|
		// input:
 | 
						|
		// vector interpreted as a free vector
 | 
						|
		// THREE.Matrix4 orthogonal matrix (matrix without scale)
 | 
						|
 | 
						|
		const x = v.x, y = v.y, z = v.z;
 | 
						|
		const e = m.elements;
 | 
						|
 | 
						|
		v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;
 | 
						|
		v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;
 | 
						|
		v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;
 | 
						|
 | 
						|
		return v;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	static transformTiedVectorInverse( v, m ) {
 | 
						|
 | 
						|
		// input:
 | 
						|
		// vector interpreted as a tied (ordinary) vector
 | 
						|
		// THREE.Matrix4 orthogonal matrix (matrix without scale)
 | 
						|
 | 
						|
		const x = v.x, y = v.y, z = v.z;
 | 
						|
		const e = m.elements;
 | 
						|
 | 
						|
		v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];
 | 
						|
		v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];
 | 
						|
		v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];
 | 
						|
 | 
						|
		return v;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	static transformPlaneToLocalSpace( plane, m, resultPlane ) {
 | 
						|
 | 
						|
		resultPlane.normal.copy( plane.normal );
 | 
						|
		resultPlane.constant = plane.constant;
 | 
						|
 | 
						|
		const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );
 | 
						|
 | 
						|
		ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m );
 | 
						|
 | 
						|
		// recalculate constant (like in setFromNormalAndCoplanarPoint)
 | 
						|
		resultPlane.constant = - referencePoint.dot( resultPlane.normal );
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
export { ConvexObjectBreaker };
 |