mirror of
				https://github.com/jiawanlong/Cesium-Examples.git
				synced 2025-11-04 09:14:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			490 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
/**
 | 
						|
 * @author yomboprime https://github.com/yomboprime
 | 
						|
 *
 | 
						|
 * @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
 | 
						|
 *
 | 
						|
 * Usage:
 | 
						|
 *
 | 
						|
 * Use the function prepareBreakableObject to prepare a Mesh object to be broken.
 | 
						|
 *
 | 
						|
 * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
 | 
						|
 *
 | 
						|
 * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
 | 
						|
 *
 | 
						|
 * Requisites for the object:
 | 
						|
 *
 | 
						|
 *  - Mesh object must have a Geometry (not BufferGeometry) and a Material
 | 
						|
 *
 | 
						|
 *  - The Geometry must be convex (this is not tested in the library). You can create convex
 | 
						|
 *  Geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
 | 
						|
 *  can also be used.
 | 
						|
 *
 | 
						|
 * Note: This lib adds member variables to object's userData member and to its vertices.
 | 
						|
 * (see prepareBreakableObject function)
 | 
						|
 * Use with caution and read the code when using with other libs.
 | 
						|
 *
 | 
						|
 * @param {double} minSizeForBreak Min size a debris can have to break.
 | 
						|
 * @param {double} smallDelta Max distance to consider that a point belongs to a plane.
 | 
						|
 * 
 | 
						|
  */
 | 
						|
 | 
						|
THREE.ConvexObjectBreaker = function (minSizeForBreak, smallDelta) {
 | 
						|
 | 
						|
    this.minSizeForBreak = minSizeForBreak || 1.4;
 | 
						|
    this.smallDelta = smallDelta || 0.0001;
 | 
						|
 | 
						|
    this.tempLine1 = new THREE.Line3();
 | 
						|
    this.tempPlane1 = new THREE.Plane();
 | 
						|
    this.tempPlane2 = new THREE.Plane();
 | 
						|
    this.tempCM1 = new THREE.Vector3();
 | 
						|
    this.tempCM2 = new THREE.Vector3();
 | 
						|
    this.tempVector3 = new THREE.Vector3();
 | 
						|
    this.tempVector3_2 = new THREE.Vector3();
 | 
						|
    this.tempVector3_3 = new THREE.Vector3();
 | 
						|
    this.tempResultObjects = { object1: null, object2: null };
 | 
						|
 | 
						|
    this.segments = [];
 | 
						|
    var n = 30 * 30;
 | 
						|
    for (var i = 0; i < n; i++) {
 | 
						|
        this.segments[i] = false;
 | 
						|
    }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
THREE.ConvexObjectBreaker.prototype = {
 | 
						|
 | 
						|
    constructor: THREE.ConvexObjectBreaker,
 | 
						|
 | 
						|
    prepareBreakableObject: function (object, mass, velocity, angularVelocity, breakable) {
 | 
						|
 | 
						|
        // object is a THREE.Object3d (normally a Mesh), must have a Geometry, and it must be convex.
 | 
						|
        // Its material property is propagated to its children (sub-pieces)
 | 
						|
        // mass must be > 0
 | 
						|
 | 
						|
        // Create vertices mark
 | 
						|
        var geometry = object.geometry;
 | 
						|
        var vertices = geometry.vertices;
 | 
						|
        for (var i = 0, il = vertices.length; i < il; i++) {
 | 
						|
            vertices[i].mark = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        var userData = object.userData;
 | 
						|
        userData.mass = mass;
 | 
						|
        userData.velocity = velocity.clone();
 | 
						|
        userData.angularVelocity = angularVelocity.clone();
 | 
						|
        userData.breakable = breakable;
 | 
						|
    },
 | 
						|
 | 
						|
    /*
 | 
						|
	 * @param {int} maxRadialIterations Iterations for radial cuts.
 | 
						|
	 * @param {int} maxRandomIterations Max random iterations for not-radial cuts
 | 
						|
	 * @param {double} minSizeForRadialSubdivision Min size a debris can have to break in radial subdivision.
 | 
						|
	 *
 | 
						|
	 * Returns the array of pieces
 | 
						|
	 */
 | 
						|
    subdivideByImpact: function (object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations, minSizeForRadialSubdivision) {
 | 
						|
 | 
						|
        var debris = [];
 | 
						|
 | 
						|
        var tempPlane1 = this.tempPlane1;
 | 
						|
        var tempPlane2 = this.tempPlane2;
 | 
						|
 | 
						|
        this.tempVector3.addVectors(pointOfImpact, normal);
 | 
						|
        tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3);
 | 
						|
 | 
						|
        var maxTotalIterations = maxRandomIterations + maxRadialIterations;
 | 
						|
 | 
						|
        var scope = this;
 | 
						|
 | 
						|
        function subdivideRadial(subObject, startAngle, endAngle, numIterations) {
 | 
						|
 | 
						|
            if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) {
 | 
						|
 | 
						|
                debris.push(subObject);
 | 
						|
 | 
						|
                return;
 | 
						|
 | 
						|
            }
 | 
						|
 | 
						|
            var angle = Math.PI;
 | 
						|
 | 
						|
            if (numIterations === 0) {
 | 
						|
 | 
						|
                tempPlane2.normal.copy(tempPlane1.normal);
 | 
						|
                tempPlane2.constant = tempPlane1.constant;
 | 
						|
 | 
						|
            }
 | 
						|
            else {
 | 
						|
 | 
						|
                if (numIterations <= maxRadialIterations) {
 | 
						|
 | 
						|
                    angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle;
 | 
						|
 | 
						|
                    // Rotate tempPlane2 at impact point around normal axis and the angle
 | 
						|
                    scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact);
 | 
						|
                    tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2);
 | 
						|
 | 
						|
                }
 | 
						|
                else {
 | 
						|
 | 
						|
                    angle = ((0.5 * (numIterations & 1)) + 0.2 * (2 - Math.random())) * Math.PI;
 | 
						|
 | 
						|
                    // Rotate tempPlane2 at object position around normal axis and the angle
 | 
						|
                    scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position);
 | 
						|
                    scope.tempVector3_3.copy(normal).add(subObject.position);
 | 
						|
                    tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2);
 | 
						|
 | 
						|
                }
 | 
						|
 | 
						|
            }
 | 
						|
 | 
						|
            // Perform the cut
 | 
						|
            scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects);
 | 
						|
 | 
						|
            var obj1 = scope.tempResultObjects.object1;
 | 
						|
            var obj2 = scope.tempResultObjects.object2;
 | 
						|
 | 
						|
            if (obj1) {
 | 
						|
 | 
						|
                subdivideRadial(obj1, startAngle, angle, numIterations + 1);
 | 
						|
 | 
						|
            }
 | 
						|
 | 
						|
            if (obj2) {
 | 
						|
 | 
						|
                subdivideRadial(obj2, angle, endAngle, numIterations + 1);
 | 
						|
 | 
						|
            }
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        subdivideRadial(object, 0, 2 * Math.PI, 0);
 | 
						|
 | 
						|
        return debris;
 | 
						|
 | 
						|
    },
 | 
						|
 | 
						|
    cutByPlane: function (object, plane, output) {
 | 
						|
 | 
						|
        // Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
 | 
						|
        // object2 can be null if the plane doesn't cut the object.
 | 
						|
        // object1 can be null only in case of internal error
 | 
						|
        // Returned value is number of pieces, 0 for error.
 | 
						|
 | 
						|
        var geometry = object.geometry;
 | 
						|
        var points = geometry.vertices;
 | 
						|
        var faces = geometry.faces;
 | 
						|
 | 
						|
        var numPoints = points.length;
 | 
						|
 | 
						|
        var points1 = [];
 | 
						|
        var points2 = [];
 | 
						|
 | 
						|
        var delta = this.smallDelta;
 | 
						|
 | 
						|
        // Reset vertices mark
 | 
						|
        for (var i = 0; i < numPoints; i++) {
 | 
						|
            points[i].mark = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        // Reset segments mark
 | 
						|
        var numPointPairs = numPoints * numPoints;
 | 
						|
        for (var i = 0; i < numPointPairs; i++) {
 | 
						|
            this.segments[i] = false;
 | 
						|
        }
 | 
						|
 | 
						|
        // Iterate through the faces to mark edges shared by coplanar faces
 | 
						|
        for (var i = 0, il = faces.length - 1; i < il; i++) {
 | 
						|
 | 
						|
            var face1 = faces[i];
 | 
						|
 | 
						|
            for (var j = i + 1, jl = faces.length; j < jl; j++) {
 | 
						|
 | 
						|
                var face2 = faces[j];
 | 
						|
 | 
						|
                var coplanar = 1 - face1.normal.dot(face2.normal) < delta;
 | 
						|
 | 
						|
                if (coplanar) {
 | 
						|
 | 
						|
                    var a1 = face1.a;
 | 
						|
                    var b1 = face1.b;
 | 
						|
                    var c1 = face1.c;
 | 
						|
                    var a2 = face2.a;
 | 
						|
                    var b2 = face2.b;
 | 
						|
                    var c2 = face2.c;
 | 
						|
 | 
						|
 | 
						|
                    if (a1 === a2 || a1 === b2 || a1 === c2) {
 | 
						|
                        if (b1 === a2 || b1 === b2 || b1 === c2) {
 | 
						|
                            this.segments[a1 * numPoints + b1] = true;
 | 
						|
                            this.segments[b1 * numPoints + a1] = true;
 | 
						|
                        }
 | 
						|
                        else {
 | 
						|
                            this.segments[c1 * numPoints + a1] = true;
 | 
						|
                            this.segments[a1 * numPoints + c1] = true;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    else if (b1 === a2 || b1 === b2 || b1 === c2) {
 | 
						|
                        this.segments[c1 * numPoints + b1] = true;
 | 
						|
                        this.segments[b1 * numPoints + c1] = true;
 | 
						|
                    }
 | 
						|
 | 
						|
                }
 | 
						|
 | 
						|
            }
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        // Transform the plane to object local space
 | 
						|
        var localPlane = this.tempPlane1;
 | 
						|
 | 
						|
        THREE.ConvexObjectBreaker.transformPlaneToLocalSpace(plane, object.matrix, localPlane);
 | 
						|
 | 
						|
        // Iterate through the faces adding points to both pieces
 | 
						|
        for (var i = 0, il = faces.length; i < il; i++) {
 | 
						|
 | 
						|
            var face = faces[i];
 | 
						|
 | 
						|
            for (var segment = 0; segment < 3; segment++) {
 | 
						|
 | 
						|
                var i0 = segment === 0 ? face.a : (segment === 1 ? face.b : face.c);
 | 
						|
                var i1 = segment === 0 ? face.b : (segment === 1 ? face.c : face.a);
 | 
						|
 | 
						|
                var segmentState = this.segments[i0 * numPoints + i1];
 | 
						|
 | 
						|
                if (segmentState) {
 | 
						|
                    // The segment already has been processed in another face
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                // Mark segment as processed (also inverted segment)
 | 
						|
                this.segments[i0 * numPoints + i1] = true;
 | 
						|
                this.segments[i1 * numPoints + i0] = true;
 | 
						|
 | 
						|
                var p0 = points[i0];
 | 
						|
                var p1 = points[i1];
 | 
						|
 | 
						|
                if (p0.mark === 0) {
 | 
						|
 | 
						|
                    var d = localPlane.distanceToPoint(p0);
 | 
						|
 | 
						|
                    // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
 | 
						|
                    if (d > delta) {
 | 
						|
                        p0.mark = 2;
 | 
						|
                        points2.push(p0);
 | 
						|
                    }
 | 
						|
                    else if (d < -delta) {
 | 
						|
                        p0.mark = 1;
 | 
						|
                        points1.push(p0);
 | 
						|
                    }
 | 
						|
                    else {
 | 
						|
                        p0.mark = 3;
 | 
						|
                        points1.push(p0);
 | 
						|
                        var p0_2 = p0.clone();
 | 
						|
                        p0_2.mark = 3;
 | 
						|
                        points2.push(p0_2);
 | 
						|
                    }
 | 
						|
 | 
						|
                }
 | 
						|
 | 
						|
                if (p1.mark === 0) {
 | 
						|
 | 
						|
                    var d = localPlane.distanceToPoint(p1);
 | 
						|
 | 
						|
                    // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
 | 
						|
                    if (d > delta) {
 | 
						|
                        p1.mark = 2;
 | 
						|
                        points2.push(p1);
 | 
						|
                    }
 | 
						|
                    else if (d < -delta) {
 | 
						|
                        p1.mark = 1;
 | 
						|
                        points1.push(p1);
 | 
						|
                    }
 | 
						|
                    else {
 | 
						|
                        p1.mark = 3;
 | 
						|
                        points1.push(p1);
 | 
						|
                        var p1_2 = p1.clone();
 | 
						|
                        p1_2.mark = 3;
 | 
						|
                        points2.push(p1_2);
 | 
						|
                    }
 | 
						|
 | 
						|
                }
 | 
						|
 | 
						|
                var mark0 = p0.mark;
 | 
						|
                var mark1 = p1.mark;
 | 
						|
 | 
						|
                if ((mark0 === 1 && mark1 === 2) || (mark0 === 2 && mark1 === 1)) {
 | 
						|
 | 
						|
                    // Intersection of segment with the plane
 | 
						|
 | 
						|
                    this.tempLine1.start.copy(p0);
 | 
						|
                    this.tempLine1.end.copy(p1);
 | 
						|
                    var intersection = localPlane.intersectLine(this.tempLine1);
 | 
						|
                    if (intersection === undefined) {
 | 
						|
                        // Shouldn't happen
 | 
						|
                        console.error("Internal error: segment does not intersect plane.");
 | 
						|
                        output.segmentedObject1 = null;
 | 
						|
                        output.segmentedObject2 = null;
 | 
						|
                        return 0;
 | 
						|
                    }
 | 
						|
 | 
						|
                    intersection.mark = 1;
 | 
						|
                    points1.push(intersection);
 | 
						|
                    var intersection_2 = intersection.clone();
 | 
						|
                    intersection_2.mark = 2;
 | 
						|
                    points2.push(intersection_2);
 | 
						|
 | 
						|
                }
 | 
						|
 | 
						|
            }
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        // Calculate debris mass (very fast and imprecise):
 | 
						|
        var newMass = object.userData.mass * 0.5;
 | 
						|
 | 
						|
        // Calculate debris Center of Mass (again fast and imprecise)
 | 
						|
        this.tempCM1.set(0, 0, 0);
 | 
						|
        var radius1 = 0;
 | 
						|
        var numPoints1 = points1.length;
 | 
						|
        if (numPoints1 > 0) {
 | 
						|
            for (var i = 0; i < numPoints1; i++) {
 | 
						|
                this.tempCM1.add(points1[i]);
 | 
						|
            }
 | 
						|
            this.tempCM1.divideScalar(numPoints1);
 | 
						|
            for (var i = 0; i < numPoints1; i++) {
 | 
						|
                var p = points1[i];
 | 
						|
                p.sub(this.tempCM1);
 | 
						|
                radius1 = Math.max(radius1, p.x, p.y, p.z);
 | 
						|
            }
 | 
						|
            this.tempCM1.add(object.position);
 | 
						|
        }
 | 
						|
 | 
						|
        this.tempCM2.set(0, 0, 0);
 | 
						|
        var radius2 = 0;
 | 
						|
        var numPoints2 = points2.length;
 | 
						|
        if (numPoints2 > 0) {
 | 
						|
            for (var i = 0; i < numPoints2; i++) {
 | 
						|
                this.tempCM2.add(points2[i]);
 | 
						|
            }
 | 
						|
            this.tempCM2.divideScalar(numPoints2);
 | 
						|
            for (var i = 0; i < numPoints2; i++) {
 | 
						|
                var p = points2[i];
 | 
						|
                p.sub(this.tempCM2);
 | 
						|
                radius2 = Math.max(radius2, p.x, p.y, p.z);
 | 
						|
            }
 | 
						|
            this.tempCM2.add(object.position);
 | 
						|
        }
 | 
						|
 | 
						|
        var object1 = null;
 | 
						|
        var object2 = null;
 | 
						|
 | 
						|
        var numObjects = 0;
 | 
						|
 | 
						|
        if (numPoints1 > 4) {
 | 
						|
 | 
						|
            object1 = new THREE.Mesh(new THREE.ConvexGeometry(points1), object.material);
 | 
						|
            object1.position.copy(this.tempCM1);
 | 
						|
            object1.quaternion.copy(object.quaternion);
 | 
						|
 | 
						|
            this.prepareBreakableObject(object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak);
 | 
						|
 | 
						|
            numObjects++;
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        if (numPoints2 > 4) {
 | 
						|
 | 
						|
            object2 = new THREE.Mesh(new THREE.ConvexGeometry(points2), object.material);
 | 
						|
            object2.position.copy(this.tempCM2);
 | 
						|
            object2.quaternion.copy(object.quaternion);
 | 
						|
 | 
						|
            this.prepareBreakableObject(object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak);
 | 
						|
 | 
						|
            numObjects++;
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        output.object1 = object1;
 | 
						|
        output.object2 = object2;
 | 
						|
 | 
						|
        return numObjects;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
THREE.ConvexObjectBreaker.transformFreeVector = function (v, m) {
 | 
						|
 | 
						|
    // input:
 | 
						|
    // vector interpreted as a free vector
 | 
						|
    // THREE.Matrix4 orthogonal matrix (matrix without scale)
 | 
						|
 | 
						|
    var x = v.x, y = v.y, z = v.z;
 | 
						|
    var e = m.elements;
 | 
						|
 | 
						|
    v.x = e[0] * x + e[4] * y + e[8] * z;
 | 
						|
    v.y = e[1] * x + e[5] * y + e[9] * z;
 | 
						|
    v.z = e[2] * x + e[6] * y + e[10] * z;
 | 
						|
 | 
						|
    return v;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
THREE.ConvexObjectBreaker.transformFreeVectorInverse = function (v, m) {
 | 
						|
 | 
						|
    // input:
 | 
						|
    // vector interpreted as a free vector
 | 
						|
    // THREE.Matrix4 orthogonal matrix (matrix without scale)
 | 
						|
 | 
						|
    var x = v.x, y = v.y, z = v.z;
 | 
						|
    var e = m.elements;
 | 
						|
 | 
						|
    v.x = e[0] * x + e[1] * y + e[2] * z;
 | 
						|
    v.y = e[4] * x + e[5] * y + e[6] * z;
 | 
						|
    v.z = e[8] * x + e[9] * y + e[10] * z;
 | 
						|
 | 
						|
    return v;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
THREE.ConvexObjectBreaker.transformTiedVectorInverse = function (v, m) {
 | 
						|
 | 
						|
    // input:
 | 
						|
    // vector interpreted as a tied (ordinary) vector
 | 
						|
    // THREE.Matrix4 orthogonal matrix (matrix without scale)
 | 
						|
 | 
						|
    var x = v.x, y = v.y, z = v.z;
 | 
						|
    var e = m.elements;
 | 
						|
 | 
						|
    v.x = e[0] * x + e[1] * y + e[2] * z - e[12];
 | 
						|
    v.y = e[4] * x + e[5] * y + e[6] * z - e[13];
 | 
						|
    v.z = e[8] * x + e[9] * y + e[10] * z - e[14];
 | 
						|
 | 
						|
    return v;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
THREE.ConvexObjectBreaker.transformPlaneToLocalSpace = function () {
 | 
						|
 | 
						|
    var v1 = new THREE.Vector3();
 | 
						|
    var m1 = new THREE.Matrix3();
 | 
						|
 | 
						|
    return function transformPlaneToLocalSpace(plane, m, resultPlane) {
 | 
						|
 | 
						|
        resultPlane.normal.copy(plane.normal);
 | 
						|
        resultPlane.constant = plane.constant;
 | 
						|
 | 
						|
        var referencePoint = THREE.ConvexObjectBreaker.transformTiedVectorInverse(plane.coplanarPoint(v1), m);
 | 
						|
 | 
						|
        THREE.ConvexObjectBreaker.transformFreeVectorInverse(resultPlane.normal, m);
 | 
						|
 | 
						|
        // recalculate constant (like in setFromNormalAndCoplanarPoint)
 | 
						|
        resultPlane.constant = -referencePoint.dot(resultPlane.normal);
 | 
						|
 | 
						|
 | 
						|
    };
 | 
						|
 | 
						|
}();
 |