mirror of
				https://github.com/jiawanlong/Cesium-Examples.git
				synced 2025-11-04 09:14:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			192 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			192 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
/**
 | 
						||
 * https://github.com/gre/bezier-easing
 | 
						||
 * BezierEasing - use bezier curve for transition easing function
 | 
						||
 * by Gaëtan Renaudeau 2014 - 2015 – MIT License
 | 
						||
 *
 | 
						||
 * https://github.com/manubb/Leaflet.PixiOverlay
 | 
						||
 */
 | 
						||
(function(f) {
 | 
						||
  if (typeof exports === 'object' && typeof module !== 'undefined') {
 | 
						||
    module.exports = f();
 | 
						||
  } else if (typeof define === 'function' && define.amd) {
 | 
						||
    define([], f);
 | 
						||
  } else {
 | 
						||
    var g;
 | 
						||
    if (typeof window !== 'undefined') {
 | 
						||
      g = window;
 | 
						||
    } else if (typeof global !== 'undefined') {
 | 
						||
      g = global;
 | 
						||
    } else if (typeof self !== 'undefined') {
 | 
						||
      g = self;
 | 
						||
    } else {
 | 
						||
      g = this;
 | 
						||
    }
 | 
						||
    g.BezierEasing = f();
 | 
						||
  }
 | 
						||
})(function() {
 | 
						||
  var define, module, exports;
 | 
						||
  return (function() {
 | 
						||
    function r(e, n, t) {
 | 
						||
      function o(i, f) {
 | 
						||
        if (!n[i]) {
 | 
						||
          if (!e[i]) {
 | 
						||
            var c = 'function' == typeof require && require;
 | 
						||
            if (!f && c) return c(i, !0);
 | 
						||
            if (u) return u(i, !0);
 | 
						||
            var a = new Error("Cannot find module '" + i + "'");
 | 
						||
            throw ((a.code = 'MODULE_NOT_FOUND'), a);
 | 
						||
          }
 | 
						||
          var p = (n[i] = { exports: {} });
 | 
						||
          e[i][0].call(
 | 
						||
            p.exports,
 | 
						||
            function(r) {
 | 
						||
              var n = e[i][1][r];
 | 
						||
              return o(n || r);
 | 
						||
            },
 | 
						||
            p,
 | 
						||
            p.exports,
 | 
						||
            r,
 | 
						||
            e,
 | 
						||
            n,
 | 
						||
            t
 | 
						||
          );
 | 
						||
        }
 | 
						||
        return n[i].exports;
 | 
						||
      }
 | 
						||
      for (var u = 'function' == typeof require && require, i = 0; i < t.length; i++) o(t[i]);
 | 
						||
      return o;
 | 
						||
    }
 | 
						||
    return r;
 | 
						||
  })()(
 | 
						||
    {
 | 
						||
      1: [
 | 
						||
        function(require, module, exports) {
 | 
						||
          /**
 | 
						||
           * https://github.com/gre/bezier-easing
 | 
						||
           * BezierEasing - use bezier curve for transition easing function
 | 
						||
           * by Gaëtan Renaudeau 2014 - 2015 – MIT License
 | 
						||
           */
 | 
						||
 | 
						||
          // These values are established by empiricism with tests (tradeoff: performance VS precision)
 | 
						||
          var NEWTON_ITERATIONS = 4;
 | 
						||
          var NEWTON_MIN_SLOPE = 0.001;
 | 
						||
          var SUBDIVISION_PRECISION = 0.0000001;
 | 
						||
          var SUBDIVISION_MAX_ITERATIONS = 10;
 | 
						||
 | 
						||
          var kSplineTableSize = 11;
 | 
						||
          var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
 | 
						||
 | 
						||
          var float32ArraySupported = typeof Float32Array === 'function';
 | 
						||
 | 
						||
          function A(aA1, aA2) {
 | 
						||
            return 1.0 - 3.0 * aA2 + 3.0 * aA1;
 | 
						||
          }
 | 
						||
          function B(aA1, aA2) {
 | 
						||
            return 3.0 * aA2 - 6.0 * aA1;
 | 
						||
          }
 | 
						||
          function C(aA1) {
 | 
						||
            return 3.0 * aA1;
 | 
						||
          }
 | 
						||
 | 
						||
          // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
 | 
						||
          function calcBezier(aT, aA1, aA2) {
 | 
						||
            return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
 | 
						||
          }
 | 
						||
 | 
						||
          // Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
 | 
						||
          function getSlope(aT, aA1, aA2) {
 | 
						||
            return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
 | 
						||
          }
 | 
						||
 | 
						||
          function binarySubdivide(aX, aA, aB, mX1, mX2) {
 | 
						||
            var currentX,
 | 
						||
              currentT,
 | 
						||
              i = 0;
 | 
						||
            do {
 | 
						||
              currentT = aA + (aB - aA) / 2.0;
 | 
						||
              currentX = calcBezier(currentT, mX1, mX2) - aX;
 | 
						||
              if (currentX > 0.0) {
 | 
						||
                aB = currentT;
 | 
						||
              } else {
 | 
						||
                aA = currentT;
 | 
						||
              }
 | 
						||
            } while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
 | 
						||
            return currentT;
 | 
						||
          }
 | 
						||
 | 
						||
          function newtonRaphsonIterate(aX, aGuessT, mX1, mX2) {
 | 
						||
            for (var i = 0; i < NEWTON_ITERATIONS; ++i) {
 | 
						||
              var currentSlope = getSlope(aGuessT, mX1, mX2);
 | 
						||
              if (currentSlope === 0.0) {
 | 
						||
                return aGuessT;
 | 
						||
              }
 | 
						||
              var currentX = calcBezier(aGuessT, mX1, mX2) - aX;
 | 
						||
              aGuessT -= currentX / currentSlope;
 | 
						||
            }
 | 
						||
            return aGuessT;
 | 
						||
          }
 | 
						||
 | 
						||
          function LinearEasing(x) {
 | 
						||
            return x;
 | 
						||
          }
 | 
						||
 | 
						||
          module.exports = function bezier(mX1, mY1, mX2, mY2) {
 | 
						||
            if (!(0 <= mX1 && mX1 <= 1 && 0 <= mX2 && mX2 <= 1)) {
 | 
						||
              throw new Error('bezier x values must be in [0, 1] range');
 | 
						||
            }
 | 
						||
 | 
						||
            if (mX1 === mY1 && mX2 === mY2) {
 | 
						||
              return LinearEasing;
 | 
						||
            }
 | 
						||
 | 
						||
            // Precompute samples table
 | 
						||
            var sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
 | 
						||
            for (var i = 0; i < kSplineTableSize; ++i) {
 | 
						||
              sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
 | 
						||
            }
 | 
						||
 | 
						||
            function getTForX(aX) {
 | 
						||
              var intervalStart = 0.0;
 | 
						||
              var currentSample = 1;
 | 
						||
              var lastSample = kSplineTableSize - 1;
 | 
						||
 | 
						||
              for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) {
 | 
						||
                intervalStart += kSampleStepSize;
 | 
						||
              }
 | 
						||
              --currentSample;
 | 
						||
 | 
						||
              // Interpolate to provide an initial guess for t
 | 
						||
              var dist =
 | 
						||
                (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]);
 | 
						||
              var guessForT = intervalStart + dist * kSampleStepSize;
 | 
						||
 | 
						||
              var initialSlope = getSlope(guessForT, mX1, mX2);
 | 
						||
              if (initialSlope >= NEWTON_MIN_SLOPE) {
 | 
						||
                return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
 | 
						||
              } else if (initialSlope === 0.0) {
 | 
						||
                return guessForT;
 | 
						||
              } else {
 | 
						||
                return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2);
 | 
						||
              }
 | 
						||
            }
 | 
						||
 | 
						||
            return function BezierEasing(x) {
 | 
						||
              // Because JavaScript number are imprecise, we should guarantee the extremes are right.
 | 
						||
              if (x === 0) {
 | 
						||
                return 0;
 | 
						||
              }
 | 
						||
              if (x === 1) {
 | 
						||
                return 1;
 | 
						||
              }
 | 
						||
              return calcBezier(getTForX(x), mY1, mY2);
 | 
						||
            };
 | 
						||
          };
 | 
						||
        },
 | 
						||
        {}
 | 
						||
      ]
 | 
						||
    },
 | 
						||
    {},
 | 
						||
    [1]
 | 
						||
  )(1);
 | 
						||
});
 |