ts/public/js/cesium-sensor-volumes.js

1966 lines
70 KiB
JavaScript
Raw Normal View History

2024-12-09 06:44:52 +00:00
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.CesiumSensorVolumes = factory());
})(this, (function () { 'use strict';
/**
* Cesium Sensor Volumes - https://github.com/Flowm/cesium-sensor-volumes
*
* Copyright 2016 Jonathan Lounsbury
* Copyright 2011-2014 Analytical Graphics Inc. and Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Portions licensed separately.
* See https://github.com/Flowm/cesium-sensor-volumes/blob/master/LICENSE.md for full licensing details.
*
* Derived from Cesium Sensors - https://github.com/AnalyticalGraphicsInc/cesium-sensors
*/
const Cartesian3 = Cesium['Cartesian3'];
const Color = Cesium['Color'];
const defined = Cesium['defined'];
const Spherical = Cesium['Spherical'];
const TimeInterval = Cesium['TimeInterval'];
const CzmlDataSource = Cesium['CzmlDataSource'];
const DataSourceDisplay = Cesium['DataSourceDisplay'];
const defaultValue = Cesium['defaultValue'];
const DeveloperError = Cesium['DeveloperError'];
const Event = Cesium['Event'];
const createMaterialPropertyDescriptor = Cesium['createMaterialPropertyDescriptor'];
const createPropertyDescriptor = Cesium['createPropertyDescriptor'];
const AssociativeArray = Cesium['AssociativeArray'];
const destroyObject = Cesium['destroyObject'];
const CesiumMath = Cesium['Math'];
const Matrix3 = Cesium['Matrix3'];
const Matrix4 = Cesium['Matrix4'];
const Quaternion = Cesium['Quaternion'];
const MaterialProperty = Cesium['MaterialProperty'];
const Property = Cesium['Property'];
const BoundingSphere = Cesium['BoundingSphere'];
const combine = Cesium['combine'];
const ComponentDatatype = Cesium['ComponentDatatype'];
const PrimitiveType = Cesium['PrimitiveType'];
const Buffer = Cesium['Buffer'];
const BufferUsage = Cesium['BufferUsage'];
const DrawCommand = Cesium['DrawCommand'];
const Pass = Cesium['Pass'];
const RenderState = Cesium['RenderState'];
const ShaderProgram = Cesium['ShaderProgram'];
const ShaderSource = Cesium['ShaderSource'];
const VertexArray = Cesium['VertexArray'];
const BlendingState = Cesium['BlendingState'];
const CullFace = Cesium['CullFace'];
const Material = Cesium['Material'];
const SceneMode = Cesium['SceneMode'];
const clone = Cesium['clone'];
/**
* An optionally time-dynamic cone.
*
* @alias ConicSensorGraphics
* @constructor
*/
const ConicSensorGraphics = function(options) {
this._minimumClockAngle = undefined;
this._minimumClockAngleSubscription = undefined;
this._maximumClockAngle = undefined;
this._maximumClockAngleSubscription = undefined;
this._innerHalfAngle = undefined;
this._innerHalfAngleSubscription = undefined;
this._outerHalfAngle = undefined;
this._outerHalfAngleSubscription = undefined;
this._lateralSurfaceMaterial = undefined;
this._lateralSurfaceMaterialSubscription = undefined;
this._intersectionColor = undefined;
this._intersectionColorSubscription = undefined;
this._intersectionWidth = undefined;
this._intersectionWidthSubscription = undefined;
this._showIntersection = undefined;
this._showIntersectionSubscription = undefined;
this._radius = undefined;
this._radiusSubscription = undefined;
this._show = undefined;
this._showSubscription = undefined;
this._definitionChanged = new Event();
this.merge(defaultValue(options, defaultValue.EMPTY_OBJECT));
};
Object.defineProperties(ConicSensorGraphics.prototype, {
/**
* Gets the event that is raised whenever a new property is assigned.
* @memberof ConicSensorGraphics.prototype
*
* @type {Event}
* @readonly
*/
definitionChanged: {
get: function() {
return this._definitionChanged;
}
},
/**
* Gets or sets the numeric {@link Property} specifying the the cone's minimum clock angle.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
minimumClockAngle: createPropertyDescriptor('minimumClockAngle'),
/**
* Gets or sets the numeric {@link Property} specifying the the cone's maximum clock angle.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
maximumClockAngle: createPropertyDescriptor('maximumClockAngle'),
/**
* Gets or sets the numeric {@link Property} specifying the the cone's inner half-angle.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
innerHalfAngle: createPropertyDescriptor('innerHalfAngle'),
/**
* Gets or sets the numeric {@link Property} specifying the the cone's outer half-angle.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
outerHalfAngle: createPropertyDescriptor('outerHalfAngle'),
/**
* Gets or sets the {@link MaterialProperty} specifying the the cone's appearance.
* @memberof ConicSensorGraphics.prototype
* @type {MaterialProperty}
*/
lateralSurfaceMaterial: createMaterialPropertyDescriptor('lateralSurfaceMaterial'),
/**
* Gets or sets the {@link Color} {@link Property} specifying the color of the line formed by the intersection of the cone and other central bodies.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
intersectionColor: createPropertyDescriptor('intersectionColor'),
/**
* Gets or sets the numeric {@link Property} specifying the width of the line formed by the intersection of the cone and other central bodies.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
intersectionWidth: createPropertyDescriptor('intersectionWidth'),
/**
* Gets or sets the boolean {@link Property} specifying the visibility of the line formed by the intersection of the cone and other central bodies.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
showIntersection: createPropertyDescriptor('showIntersection'),
/**
* Gets or sets the numeric {@link Property} specifying the radius of the cone's projection.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
radius: createPropertyDescriptor('radius'),
/**
* Gets or sets the boolean {@link Property} specifying the visibility of the cone.
* @memberof ConicSensorGraphics.prototype
* @type {Property}
*/
show: createPropertyDescriptor('show')
});
/**
* Duplicates a ConicSensorGraphics instance.
*
* @param {ConicSensorGraphics} [result] The object onto which to store the result.
* @returns {ConicSensorGraphics} The modified result parameter or a new instance if one was not provided.
*/
ConicSensorGraphics.prototype.clone = function(result) {
if (!defined(result)) {
result = new ConicSensorGraphics();
}
result.show = this.show;
result.innerHalfAngle = this.innerHalfAngle;
result.outerHalfAngle = this.outerHalfAngle;
result.minimumClockAngle = this.minimumClockAngle;
result.maximumClockAngle = this.maximumClockAngle;
result.radius = this.radius;
result.showIntersection = this.showIntersection;
result.intersectionColor = this.intersectionColor;
result.intersectionWidth = this.intersectionWidth;
result.lateralSurfaceMaterial = this.lateralSurfaceMaterial;
return result;
};
/**
* Assigns each unassigned property on this object to the value
* of the same property on the provided source object.
*
* @param {ConicSensorGraphics} source The object to be merged into this object.
*/
ConicSensorGraphics.prototype.merge = function(source) {
// >>includeStart('debug', pragmas.debug);
if (!defined(source)) {
throw new DeveloperError('source is required.');
}
// >>includeEnd('debug');
this.show = defaultValue(this.show, source.show);
this.innerHalfAngle = defaultValue(this.innerHalfAngle, source.innerHalfAngle);
this.outerHalfAngle = defaultValue(this.outerHalfAngle, source.outerHalfAngle);
this.minimumClockAngle = defaultValue(this.minimumClockAngle, source.minimumClockAngle);
this.maximumClockAngle = defaultValue(this.maximumClockAngle, source.maximumClockAngle);
this.radius = defaultValue(this.radius, source.radius);
this.showIntersection = defaultValue(this.showIntersection, source.showIntersection);
this.intersectionColor = defaultValue(this.intersectionColor, source.intersectionColor);
this.intersectionWidth = defaultValue(this.intersectionWidth, source.intersectionWidth);
this.lateralSurfaceMaterial = defaultValue(this.lateralSurfaceMaterial, source.lateralSurfaceMaterial);
};
var SensorVolume = "#version 300 es\n\nuniform vec4 u_intersectionColor;\nuniform float u_intersectionWidth;\n\nbool inSensorShadow(vec3 coneVertexWC, vec3 pointWC)\n{\n \n vec3 D = czm_ellipsoidInverseRadii;\n\n \n vec3 q = D * coneVertexWC;\n float qMagnitudeSquared = dot(q, q);\n float test = qMagnitudeSquared - 1.0;\n\n \n vec3 temp = D * pointWC - q;\n float d = dot(temp, q);\n\n \n return (d < -test) && (d / length(temp) < -sqrt(test));\n}\n\nvec4 getIntersectionColor()\n{\n return u_intersectionColor;\n}\n\nfloat getIntersectionWidth()\n{\n return u_intersectionWidth;\n}\n\nvec2 sensor2dTextureCoordinates(float sensorRadius, vec3 pointMC)\n{\n \n float t = pointMC.z / sensorRadius;\n float s = 1.0 + (atan(pointMC.y, pointMC.x) / czm_twoPi);\n s = s - floor(s);\n\n return vec2(s, t);\n}\n";
var CustomSensorVolumeFS = "#version 300 es\n\nuniform bool u_showIntersection;\nuniform bool u_showThroughEllipsoid;\n\nuniform float u_sensorRadius;\nuniform float u_normalDirection;\n\nin vec3 v_positionWC;\nin vec3 v_positionEC;\nin vec3 v_normalEC;\n\nvec4 getColor(float sensorRadius, vec3 pointEC)\n{\n czm_materialInput materialInput;\n\n vec3 pointMC = (czm_inverseModelView * vec4(pointEC, 1.0)).xyz;\n materialInput.st = sensor2dTextureCoordinates(sensorRadius, pointMC);\n materialInput.str = pointMC / sensorRadius;\n\n vec3 positionToEyeEC = -v_positionEC;\n materialInput.positionToEyeEC = positionToEyeEC;\n\n vec3 normalEC = normalize(v_normalEC);\n materialInput.normalEC = u_normalDirection * normalEC;\n\n czm_material material = czm_getMaterial(materialInput);\n return mix(czm_phong(normalize(positionToEyeEC), material, czm_lightDirectionEC), vec4(material.diffuse, material.alpha), 0.4);\n}\n\nbool isOnBoundary(float value, float epsilon)\n{\n float width = getIntersectionWidth();\n float tolerance = width * epsilon;\n\n float delta = max(abs(dFdx(value)), abs(dFdy(value)));\n float pixels = width * delta;\n float temp = abs(value);\n \n \n \n \n \n \n \n return temp < tolerance && temp < pixels || (delta < 10.0 * tolerance && temp - delta < tolerance && temp < pixels);\n}\n\nvec4 shade(bool isOnBoundary)\n{\n if (u_showIntersection && isOnBoundary)\n {\n return getIntersectionColor();\n }\n return getColor(u_sensorRadius, v_positionEC);\n}\n\nfloat ellipsoidSurfaceFunction(vec3 point)\n{\n vec3 scaled = czm_ellipsoidInverseRadii * point;\n return dot(scaled, scaled) - 1.0;\n}\n\nvoid main()\n{\n vec3 sensorVertexWC = czm_model[3].xyz; \n vec3 sensorVertexEC = czm_modelView[3].xyz; \n\n float ellipsoidValue = ellipsoidSurfaceFunction(v_positionWC);\n\n \n if (!u_showThroughEllipsoid)\n {\n \n \n if (ellipsoidValue < 0.0)\n {\n discard;\n }\n\n \n if (inSensorShadow(sensorVertexWC, v_positionWC))\n {\n discard;\n }\n }\n\n \n \n if (distance(v_positionEC, sensorVertexEC) > u_sensorRadius)\n {\n discard;\n }\n\n \n bool isOnEllipsoid = isOnBoundary(ellipsoidValue, czm_epsilon3);\n out_FragColor = shade(isOnEllipsoid);\n}\n";
var CustomSensorVolumeVS = "#version 300 es\n\nin vec4 position;\nin vec3 normal;\n\nout vec3 v_positionWC;\nout vec3 v_positionEC;\nout vec3 v_normalEC;\n\nvoid main()\n{\n gl_Position = czm_modelViewProjection * position;\n v_positionWC = (czm_model * position).xyz;\n v_positionEC = (czm_modelView * position).xyz;\n v_normalEC = czm_normal * normal;\n}\n";
const attributeLocations = {
position: 0,
normal: 1
};
const FAR = 5906376272000.0; // distance from the Sun to Pluto in meters.
/**
* DOC_TBA
*
* @alias CustomSensorVolume
* @constructor
*/
const CustomSensorVolume = function(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
this._pickId = undefined;
this._pickPrimitive = defaultValue(options._pickPrimitive, this);
this._frontFaceColorCommand = new DrawCommand();
this._backFaceColorCommand = new DrawCommand();
this._pickCommand = new DrawCommand();
this._boundingSphere = new BoundingSphere();
this._boundingSphereWC = new BoundingSphere();
this._frontFaceColorCommand.primitiveType = PrimitiveType.TRIANGLES;
this._frontFaceColorCommand.boundingVolume = this._boundingSphereWC;
this._frontFaceColorCommand.owner = this;
this._backFaceColorCommand.primitiveType = this._frontFaceColorCommand.primitiveType;
this._backFaceColorCommand.boundingVolume = this._frontFaceColorCommand.boundingVolume;
this._backFaceColorCommand.owner = this;
this._pickCommand.primitiveType = this._frontFaceColorCommand.primitiveType;
this._pickCommand.boundingVolume = this._frontFaceColorCommand.boundingVolume;
this._pickCommand.owner = this;
/**
* <code>true</code> if this sensor will be shown; otherwise, <code>false</code>
*
* @type {Boolean}
* @default true
*/
this.show = defaultValue(options.show, true);
/**
* When <code>true</code>, a polyline is shown where the sensor outline intersections the globe.
*
* @type {Boolean}
*
* @default true
*
* @see CustomSensorVolume#intersectionColor
*/
this.showIntersection = defaultValue(options.showIntersection, true);
/**
* <p>
* Determines if a sensor intersecting the ellipsoid is drawn through the ellipsoid and potentially out
* to the other side, or if the part of the sensor intersecting the ellipsoid stops at the ellipsoid.
* </p>
*
* @type {Boolean}
* @default false
*/
this.showThroughEllipsoid = defaultValue(options.showThroughEllipsoid, false);
this._showThroughEllipsoid = this.showThroughEllipsoid;
/**
* The 4x4 transformation matrix that transforms this sensor from model to world coordinates. In it's model
* coordinates, the sensor's principal direction is along the positive z-axis. The clock angle, sometimes
* called azimuth, is the angle in the sensor's X-Y plane measured from the positive X-axis toward the positive
* Y-axis. The cone angle, sometimes called elevation, is the angle out of the X-Y plane along the positive Z-axis.
* <br /><br />
* <div align='center'>
* <img src='images/CustomSensorVolume.setModelMatrix.png' /><br />
* Model coordinate system for a custom sensor
* </div>
*
* @type {Matrix4}
* @default {@link Matrix4.IDENTITY}
*
* @example
* // The sensor's vertex is located on the surface at -75.59777 degrees longitude and 40.03883 degrees latitude.
* // The sensor's opens upward, along the surface normal.
* var center = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883);
* sensor.modelMatrix = Cesium.Transforms.eastNorthUpToFixedFrame(center);
*/
this.modelMatrix = Matrix4.clone(defaultValue(options.modelMatrix, Matrix4.IDENTITY));
this._modelMatrix = new Matrix4();
/**
* DOC_TBA
*
* @type {Number}
* @default {@link Number.POSITIVE_INFINITY}
*/
this.radius = defaultValue(options.radius, Number.POSITIVE_INFINITY);
this._directions = undefined;
this._directionsDirty = false;
this.directions = defined(options.directions) ? options.directions : [];
/**
* The surface appearance of the sensor. This can be one of several built-in {@link Material} objects or a custom material, scripted with
* {@link https://github.com/AnalyticalGraphicsInc/cesium/wiki/Fabric|Fabric}.
* <p>
* The default material is <code>Material.ColorType</code>.
* </p>
*
* @type {Material}
* @default Material.fromType(Material.ColorType)
*
* @see {@link https://github.com/AnalyticalGraphicsInc/cesium/wiki/Fabric|Fabric}
*
* @example
* // 1. Change the color of the default material to yellow
* sensor.lateralSurfaceMaterial.uniforms.color = new Cesium.Color(1.0, 1.0, 0.0, 1.0);
*
* // 2. Change material to horizontal stripes
* sensor.lateralSurfaceMaterial = Cesium.Material.fromType(Material.StripeType);
*/
this.lateralSurfaceMaterial = defined(options.lateralSurfaceMaterial) ? options.lateralSurfaceMaterial : Material.fromType(Material.ColorType);
this._lateralSurfaceMaterial = undefined;
this._translucent = undefined;
/**
* The color of the polyline where the sensor outline intersects the globe. The default is {@link Color.WHITE}.
*
* @type {Color}
* @default {@link Color.WHITE}
*
* @see CustomSensorVolume#showIntersection
*/
this.intersectionColor = Color.clone(defaultValue(options.intersectionColor, Color.WHITE));
/**
* The approximate pixel width of the polyline where the sensor outline intersects the globe. The default is 5.0.
*
* @type {Number}
* @default 5.0
*
* @see CustomSensorVolume#showIntersection
*/
this.intersectionWidth = defaultValue(options.intersectionWidth, 5.0);
/**
* User-defined object returned when the sensors is picked.
*
* @type Object
*
* @default undefined
*
* @see Scene#pick
*/
this.id = options.id;
this._id = undefined;
var that = this;
/* eslint-disable camelcase */
this._uniforms = {
u_showThroughEllipsoid: function() {
return that.showThroughEllipsoid;
},
u_showIntersection: function() {
return that.showIntersection;
},
u_sensorRadius: function() {
return isFinite(that.radius) ? that.radius : FAR;
},
u_intersectionColor: function() {
return that.intersectionColor;
},
u_intersectionWidth: function() {
return that.intersectionWidth;
},
u_normalDirection: function() {
return 1.0;
}
};
/* eslint-enable camelcase */
this._mode = SceneMode.SCENE3D;
};
Object.defineProperties(CustomSensorVolume.prototype, {
directions: {
get: function() {
return this._directions;
},
set: function(value) {
this._directions = value;
this._directionsDirty = true;
}
}
});
const n0Scratch = new Cartesian3();
const n1Scratch = new Cartesian3();
const n2Scratch = new Cartesian3();
function computePositions(customSensorVolume) {
var directions = customSensorVolume._directions;
var length = directions.length;
var positions = new Float32Array(3 * length);
var r = isFinite(customSensorVolume.radius) ? customSensorVolume.radius : FAR;
var boundingVolumePositions = [Cartesian3.ZERO];
for (var i = length - 2, j = length - 1, k = 0; k < length; i = j++, j = k++) {
// PERFORMANCE_IDEA: We can avoid redundant operations for adjacent edges.
var n0 = Cartesian3.fromSpherical(directions[i], n0Scratch);
var n1 = Cartesian3.fromSpherical(directions[j], n1Scratch);
var n2 = Cartesian3.fromSpherical(directions[k], n2Scratch);
// Extend position so the volume encompasses the sensor's radius.
var theta = Math.max(Cartesian3.angleBetween(n0, n1), Cartesian3.angleBetween(n1, n2));
var distance = r / Math.cos(theta * 0.5);
var p = Cartesian3.multiplyByScalar(n1, distance, new Cartesian3());
positions[(j * 3)] = p.x;
positions[(j * 3) + 1] = p.y;
positions[(j * 3) + 2] = p.z;
boundingVolumePositions.push(p);
}
BoundingSphere.fromPoints(boundingVolumePositions, customSensorVolume._boundingSphere);
return positions;
}
const nScratch = new Cartesian3();
function createVertexArray(customSensorVolume, context) {
var positions = computePositions(customSensorVolume);
var length = customSensorVolume._directions.length;
var vertices = new Float32Array(2 * 3 * 3 * length);
var k = 0;
for (var i = length - 1, j = 0; j < length; i = j++) {
var p0 = new Cartesian3(positions[(i * 3)], positions[(i * 3) + 1], positions[(i * 3) + 2]);
var p1 = new Cartesian3(positions[(j * 3)], positions[(j * 3) + 1], positions[(j * 3) + 2]);
var n = Cartesian3.normalize(Cartesian3.cross(p1, p0, nScratch), nScratch); // Per-face normals
vertices[k++] = 0.0; // Sensor vertex
vertices[k++] = 0.0;
vertices[k++] = 0.0;
vertices[k++] = n.x;
vertices[k++] = n.y;
vertices[k++] = n.z;
vertices[k++] = p1.x;
vertices[k++] = p1.y;
vertices[k++] = p1.z;
vertices[k++] = n.x;
vertices[k++] = n.y;
vertices[k++] = n.z;
vertices[k++] = p0.x;
vertices[k++] = p0.y;
vertices[k++] = p0.z;
vertices[k++] = n.x;
vertices[k++] = n.y;
vertices[k++] = n.z;
}
var vertexBuffer = Buffer.createVertexBuffer({
context: context,
typedArray: new Float32Array(vertices),
usage: BufferUsage.STATIC_DRAW
});
var stride = 2 * 3 * Float32Array.BYTES_PER_ELEMENT;
var attributes = [{
index: attributeLocations.position,
vertexBuffer: vertexBuffer,
componentsPerAttribute: 3,
componentDatatype: ComponentDatatype.FLOAT,
offsetInBytes: 0,
strideInBytes: stride
}, {
index: attributeLocations.normal,
vertexBuffer: vertexBuffer,
componentsPerAttribute: 3,
componentDatatype: ComponentDatatype.FLOAT,
offsetInBytes: 3 * Float32Array.BYTES_PER_ELEMENT,
strideInBytes: stride
}];
return new VertexArray({
context: context,
attributes: attributes
});
}
/**
* Called when {@link Viewer} or {@link CesiumWidget} render the scene to
* get the draw commands needed to render this primitive.
* <p>
* Do not call this function directly. This is documented just to
* list the exceptions that may be propagated when the scene is rendered:
* </p>
*
* @exception {DeveloperError} this.radius must be greater than or equal to zero.
* @exception {DeveloperError} this.lateralSurfaceMaterial must be defined.
*/
// eslint-disable-next-line complexity
CustomSensorVolume.prototype.update = function(frameState) {
this._mode = frameState.mode;
if (!this.show || this._mode !== SceneMode.SCENE3D) {
return;
}
var context = frameState.context;
var commandList = frameState.commandList;
// >>includeStart('debug', pragmas.debug);
if (this.radius < 0.0) {
throw new DeveloperError('this.radius must be greater than or equal to zero.');
}
if (!defined(this.lateralSurfaceMaterial)) {
throw new DeveloperError('this.lateralSurfaceMaterial must be defined.');
}
// >>includeEnd('debug');
var translucent = this.lateralSurfaceMaterial.isTranslucent();
// Initial render state creation
if ((this._showThroughEllipsoid !== this.showThroughEllipsoid) ||
(!defined(this._frontFaceColorCommand.renderState)) ||
(this._translucent !== translucent)
) {
this._showThroughEllipsoid = this.showThroughEllipsoid;
this._translucent = translucent;
var rs;
if (translucent) {
rs = RenderState.fromCache({
depthTest: {
// This would be better served by depth testing with a depth buffer that does not
// include the ellipsoid depth - or a g-buffer containing an ellipsoid mask
// so we can selectively depth test.
enabled: !this.showThroughEllipsoid
},
depthMask: false,
blending: BlendingState.ALPHA_BLEND,
cull: {
enabled: true,
face: CullFace.BACK
}
});
this._frontFaceColorCommand.renderState = rs;
this._frontFaceColorCommand.pass = Pass.TRANSLUCENT;
rs = RenderState.fromCache({
depthTest: {
enabled: !this.showThroughEllipsoid
},
depthMask: false,
blending: BlendingState.ALPHA_BLEND,
cull: {
enabled: true,
face: CullFace.FRONT
}
});
this._backFaceColorCommand.renderState = rs;
this._backFaceColorCommand.pass = Pass.TRANSLUCENT;
rs = RenderState.fromCache({
depthTest: {
enabled: !this.showThroughEllipsoid
},
depthMask: false,
blending: BlendingState.ALPHA_BLEND
});
this._pickCommand.renderState = rs;
} else {
rs = RenderState.fromCache({
depthTest: {
enabled: true
},
depthMask: true
});
this._frontFaceColorCommand.renderState = rs;
this._frontFaceColorCommand.pass = Pass.OPAQUE;
rs = RenderState.fromCache({
depthTest: {
enabled: true
},
depthMask: true
});
this._pickCommand.renderState = rs;
}
}
// Recreate vertex buffer when directions change
var directionsChanged = this._directionsDirty;
if (directionsChanged) {
this._directionsDirty = false;
this._va = this._va && this._va.destroy();
var directions = this._directions;
if (directions && (directions.length >= 3)) {
this._frontFaceColorCommand.vertexArray = createVertexArray(this, context);
this._backFaceColorCommand.vertexArray = this._frontFaceColorCommand.vertexArray;
this._pickCommand.vertexArray = this._frontFaceColorCommand.vertexArray;
}
}
if (!defined(this._frontFaceColorCommand.vertexArray)) {
return;
}
var pass = frameState.passes;
var modelMatrixChanged = !Matrix4.equals(this.modelMatrix, this._modelMatrix);
if (modelMatrixChanged) {
Matrix4.clone(this.modelMatrix, this._modelMatrix);
}
if (directionsChanged || modelMatrixChanged) {
BoundingSphere.transform(this._boundingSphere, this.modelMatrix, this._boundingSphereWC);
}
this._frontFaceColorCommand.modelMatrix = this.modelMatrix;
this._backFaceColorCommand.modelMatrix = this._frontFaceColorCommand.modelMatrix;
this._pickCommand.modelMatrix = this._frontFaceColorCommand.modelMatrix;
var materialChanged = this._lateralSurfaceMaterial !== this.lateralSurfaceMaterial;
this._lateralSurfaceMaterial = this.lateralSurfaceMaterial;
this._lateralSurfaceMaterial.update(context);
if (pass.render) {
var frontFaceColorCommand = this._frontFaceColorCommand;
var backFaceColorCommand = this._backFaceColorCommand;
// Recompile shader when material changes
if (materialChanged || !defined(frontFaceColorCommand.shaderProgram)) {
var fsSource = new ShaderSource({
sources: [SensorVolume, this._lateralSurfaceMaterial.shaderSource, CustomSensorVolumeFS]
});
frontFaceColorCommand.shaderProgram = ShaderProgram.replaceCache({
context: context,
shaderProgram: frontFaceColorCommand.shaderProgram,
vertexShaderSource: CustomSensorVolumeVS,
fragmentShaderSource: fsSource,
attributeLocations: attributeLocations
});
frontFaceColorCommand.uniformMap = combine(this._uniforms, this._lateralSurfaceMaterial._uniforms);
backFaceColorCommand.shaderProgram = frontFaceColorCommand.shaderProgram;
backFaceColorCommand.uniformMap = combine(this._uniforms, this._lateralSurfaceMaterial._uniforms);
// eslint-disable-next-line camelcase
backFaceColorCommand.uniformMap.u_normalDirection = function() {
return -1.0;
};
}
if (translucent) {
commandList.push(this._backFaceColorCommand, this._frontFaceColorCommand);
} else {
commandList.push(this._frontFaceColorCommand);
}
}
if (pass.pick) {
var pickCommand = this._pickCommand;
if (!defined(this._pickId) || (this._id !== this.id)) {
this._id = this.id;
this._pickId = this._pickId && this._pickId.destroy();
this._pickId = context.createPickId({
primitive: this._pickPrimitive,
id: this.id
});
}
// Recompile shader when material changes
if (materialChanged || !defined(pickCommand.shaderProgram)) {
var pickFS = new ShaderSource({
sources: [SensorVolume, this._lateralSurfaceMaterial.shaderSource, CustomSensorVolumeFS],
pickColorQualifier: 'uniform'
});
pickCommand.shaderProgram = ShaderProgram.replaceCache({
context: context,
shaderProgram: pickCommand.shaderProgram,
vertexShaderSource: CustomSensorVolumeVS,
fragmentShaderSource: pickFS,
attributeLocations: attributeLocations
});
var that = this;
var uniforms = {
// eslint-disable-next-line camelcase
czm_pickColor: function() {
return that._pickId.color;
}
};
pickCommand.uniformMap = combine(combine(this._uniforms, this._lateralSurfaceMaterial._uniforms), uniforms);
}
pickCommand.pass = translucent ? Pass.TRANSLUCENT : Pass.OPAQUE;
commandList.push(pickCommand);
}
};
/**
* DOC_TBA
*/
CustomSensorVolume.prototype.isDestroyed = function() {
return false;
};
/**
* DOC_TBA
*/
CustomSensorVolume.prototype.destroy = function() {
this._frontFaceColorCommand.vertexArray = this._frontFaceColorCommand.vertexArray && this._frontFaceColorCommand.vertexArray.destroy();
this._frontFaceColorCommand.shaderProgram = this._frontFaceColorCommand.shaderProgram && this._frontFaceColorCommand.shaderProgram.destroy();
this._pickCommand.shaderProgram = this._pickCommand.shaderProgram && this._pickCommand.shaderProgram.destroy();
this._pickId = this._pickId && this._pickId.destroy();
return destroyObject(this);
};
function removePrimitive(entity, hash, primitives) {
var data = hash[entity.id];
if (defined(data)) {
var primitive = data.primitive;
primitives.remove(primitive);
if (!primitive.isDestroyed()) {
primitive.destroy();
}
delete hash[entity.id];
}
}
const defaultIntersectionColor$2 = Color.WHITE;
const defaultIntersectionWidth$2 = 1.0;
const defaultRadius$2 = Number.POSITIVE_INFINITY;
const matrix3Scratch$2 = new Matrix3();
const cachedPosition$2 = new Cartesian3();
const cachedOrientation$2 = new Quaternion();
function assignSpherical$1(index, array, clock, cone) {
var spherical = array[index];
if (!defined(spherical)) {
spherical = new Spherical();
array[index] = spherical;
}
spherical.clock = clock;
spherical.cone = cone;
spherical.magnitude = 1.0;
}
// eslint-disable-next-line max-params
function computeDirections(primitive, minimumClockAngle, maximumClockAngle, innerHalfAngle, outerHalfAngle) {
var directions = primitive.directions;
var angle;
var i = 0;
var angleStep = CesiumMath.toRadians(2.0);
if (minimumClockAngle === 0.0 && maximumClockAngle === CesiumMath.TWO_PI) {
// No clock angle limits, so this is just a circle.
// There might be a hole but we're ignoring it for now.
for (angle = 0.0; angle < CesiumMath.TWO_PI; angle += angleStep) {
assignSpherical$1(i++, directions, angle, outerHalfAngle);
}
} else {
// There are clock angle limits.
for (angle = minimumClockAngle; angle < maximumClockAngle; angle += angleStep) {
assignSpherical$1(i++, directions, angle, outerHalfAngle);
}
assignSpherical$1(i++, directions, maximumClockAngle, outerHalfAngle);
if (innerHalfAngle) {
for (angle = maximumClockAngle; angle > minimumClockAngle; angle -= angleStep) {
assignSpherical$1(i++, directions, angle, innerHalfAngle);
}
assignSpherical$1(i++, directions, minimumClockAngle, innerHalfAngle);
} else {
assignSpherical$1(i++, directions, maximumClockAngle, 0.0);
}
}
directions.length = i;
primitive.directions = directions;
}
/**
* A {@link Visualizer} which maps {@link Entity#conicSensor} to a {@link ConicSensor}.
* @alias ConicSensorVisualizer
* @constructor
*
* @param {Scene} scene The scene the primitives will be rendered in.
* @param {EntityCollection} entityCollection The entityCollection to visualize.
*/
const ConicSensorVisualizer = function(scene, entityCollection) {
// >>includeStart('debug', pragmas.debug);
if (!defined(scene)) {
throw new DeveloperError('scene is required.');
}
if (!defined(entityCollection)) {
throw new DeveloperError('entityCollection is required.');
}
// >>includeEnd('debug');
entityCollection.collectionChanged.addEventListener(ConicSensorVisualizer.prototype._onCollectionChanged, this);
this._scene = scene;
this._primitives = scene.primitives;
this._entityCollection = entityCollection;
this._hash = {};
this._entitiesToVisualize = new AssociativeArray();
this._onCollectionChanged(entityCollection, entityCollection.values, [], []);
};
/**
* Updates the primitives created by this visualizer to match their
* Entity counterpart at the given time.
*
* @param {JulianDate} time The time to update to.
* @returns {Boolean} This function always returns true.
*/
ConicSensorVisualizer.prototype.update = function(time) {
// >>includeStart('debug', pragmas.debug);
if (!defined(time)) {
throw new DeveloperError('time is required.');
}
// >>includeEnd('debug');
var entities = this._entitiesToVisualize.values;
var hash = this._hash;
var primitives = this._primitives;
for (var i = 0, len = entities.length; i < len; i++) {
var entity = entities[i];
var conicSensorGraphics = entity._conicSensor;
var position;
var orientation;
var data = hash[entity.id];
var show = entity.isShowing && entity.isAvailable(time) && Property.getValueOrDefault(conicSensorGraphics._show, time, true);
if (show) {
position = Property.getValueOrUndefined(entity._position, time, cachedPosition$2);
orientation = Property.getValueOrUndefined(entity._orientation, time, cachedOrientation$2);
show = defined(position) && defined(orientation);
}
if (!show) {
// don't bother creating or updating anything else
if (defined(data)) {
data.primitive.show = false;
}
continue;
}
var primitive = defined(data) ? data.primitive : undefined;
if (!defined(primitive)) {
primitive = new CustomSensorVolume();
primitive.id = entity;
primitives.add(primitive);
data = {
primitive: primitive,
position: undefined,
orientation: undefined,
minimumClockAngle: undefined,
maximumClockAngle: undefined,
innerHalfAngle: undefined,
outerHalfAngle: undefined
};
hash[entity.id] = data;
}
if (!Cartesian3.equals(position, data.position) || !Quaternion.equals(orientation, data.orientation)) {
Matrix4.fromRotationTranslation(Matrix3.fromQuaternion(orientation, matrix3Scratch$2), position, primitive.modelMatrix);
data.position = Cartesian3.clone(position, data.position);
data.orientation = Quaternion.clone(orientation, data.orientation);
}
primitive.show = true;
var minimumClockAngle = Property.getValueOrDefault(conicSensorGraphics._minimumClockAngle, time, 0);
var maximumClockAngle = Property.getValueOrDefault(conicSensorGraphics._maximumClockAngle, time, CesiumMath.TWO_PI);
var innerHalfAngle = Property.getValueOrDefault(conicSensorGraphics._innerHalfAngle, time, 0);
var outerHalfAngle = Property.getValueOrDefault(conicSensorGraphics._outerHalfAngle, time, Math.PI);
if (minimumClockAngle !== data.minimumClockAngle ||
maximumClockAngle !== data.maximumClockAngle ||
innerHalfAngle !== data.innerHalfAngle ||
outerHalfAngle !== data.outerHalfAngle
) {
computeDirections(primitive, minimumClockAngle, maximumClockAngle, innerHalfAngle, outerHalfAngle);
data.innerHalfAngle = innerHalfAngle;
data.maximumClockAngle = maximumClockAngle;
data.outerHalfAngle = outerHalfAngle;
data.minimumClockAngle = minimumClockAngle;
}
primitive.radius = Property.getValueOrDefault(conicSensorGraphics._radius, time, defaultRadius$2);
primitive.lateralSurfaceMaterial = MaterialProperty.getValue(time, conicSensorGraphics._lateralSurfaceMaterial, primitive.lateralSurfaceMaterial);
primitive.intersectionColor = Property.getValueOrClonedDefault(conicSensorGraphics._intersectionColor, time, defaultIntersectionColor$2, primitive.intersectionColor);
primitive.intersectionWidth = Property.getValueOrDefault(conicSensorGraphics._intersectionWidth, time, defaultIntersectionWidth$2);
}
return true;
};
/**
* Returns true if this object was destroyed; otherwise, false.
*
* @returns {Boolean} True if this object was destroyed; otherwise, false.
*/
ConicSensorVisualizer.prototype.isDestroyed = function() {
return false;
};
/**
* Removes and destroys all primitives created by this instance.
*/
ConicSensorVisualizer.prototype.destroy = function() {
var entities = this._entitiesToVisualize.values;
var hash = this._hash;
var primitives = this._primitives;
for (var i = entities.length - 1; i > -1; i--) {
removePrimitive(entities[i], hash, primitives);
}
return destroyObject(this);
};
/**
* @private
*/
ConicSensorVisualizer.prototype._onCollectionChanged = function(entityCollection, added, removed, changed) {
var i;
var entity;
var entities = this._entitiesToVisualize;
var hash = this._hash;
var primitives = this._primitives;
for (i = added.length - 1; i > -1; i--) {
entity = added[i];
if (defined(entity._conicSensor) && defined(entity._position) && defined(entity._orientation)) {
entities.set(entity.id, entity);
}
}
for (i = changed.length - 1; i > -1; i--) {
entity = changed[i];
if (defined(entity._conicSensor) && defined(entity._position) && defined(entity._orientation)) {
entities.set(entity.id, entity);
} else {
removePrimitive(entity, hash, primitives);
entities.remove(entity.id);
}
}
for (i = removed.length - 1; i > -1; i--) {
entity = removed[i];
removePrimitive(entity, hash, primitives);
entities.remove(entity.id);
}
};
/**
* An optionally time-dynamic custom patterned sensor.
*
* @alias CustomPatternSensorGraphics
* @constructor
*/
const CustomPatternSensorGraphics = function(options) {
this._directions = undefined;
this._directionsSubscription = undefined;
this._lateralSurfaceMaterial = undefined;
this._lateralSurfaceMaterialSubscription = undefined;
this._intersectionColor = undefined;
this._intersectionColorSubscription = undefined;
this._intersectionWidth = undefined;
this._intersectionWidthSubscription = undefined;
this._showIntersection = undefined;
this._showIntersectionSubscription = undefined;
this._radius = undefined;
this._radiusSubscription = undefined;
this._show = undefined;
this._showSubscription = undefined;
this._definitionChanged = new Event();
this.merge(defaultValue(options, defaultValue.EMPTY_OBJECT));
};
Object.defineProperties(CustomPatternSensorGraphics.prototype, {
/**
* Gets the event that is raised whenever a new property is assigned.
* @memberof CustomPatternSensorGraphics.prototype
*
* @type {Event}
* @readonly
*/
definitionChanged: {
get: function() {
return this._definitionChanged;
}
},
/**
* A {@link Property} which returns an array of {@link Spherical} instances representing the sensor's projection.
* @memberof CustomPatternSensorGraphics.prototype
* @type {Property}
*/
directions: createPropertyDescriptor('directions'),
/**
* Gets or sets the {@link MaterialProperty} specifying the the sensor's appearance.
* @memberof CustomPatternSensorGraphics.prototype
* @type {MaterialProperty}
*/
lateralSurfaceMaterial: createMaterialPropertyDescriptor('lateralSurfaceMaterial'),
/**
* Gets or sets the {@link Color} {@link Property} specifying the color of the line formed by the intersection of the sensor and other central bodies.
* @memberof CustomPatternSensorGraphics.prototype
* @type {Property}
*/
intersectionColor: createPropertyDescriptor('intersectionColor'),
/**
* Gets or sets the numeric {@link Property} specifying the width of the line formed by the intersection of the sensor and other central bodies.
* @memberof CustomPatternSensorGraphics.prototype
* @type {Property}
*/
intersectionWidth: createPropertyDescriptor('intersectionWidth'),
/**
* Gets or sets the boolean {@link Property} specifying the visibility of the line formed by the intersection of the sensor and other central bodies.
* @memberof CustomPatternSensorGraphics.prototype
* @type {Property}
*/
showIntersection: createPropertyDescriptor('showIntersection'),
/**
* Gets or sets the numeric {@link Property} specifying the radius of the sensor's projection.
* @memberof CustomPatternSensorGraphics.prototype
* @type {Property}
*/
radius: createPropertyDescriptor('radius'),
/**
* Gets or sets the boolean {@link Property} specifying the visibility of the sensor.
* @memberof CustomPatternSensorGraphics.prototype
* @type {Property}
*/
show: createPropertyDescriptor('show')
});
/**
* Duplicates a CustomPatternSensorGraphics instance.
*
* @param {CustomPatternSensorGraphics} [result] The object onto which to store the result.
* @returns {CustomPatternSensorGraphics} The modified result parameter or a new instance if one was not provided.
*/
CustomPatternSensorGraphics.prototype.clone = function(result) {
if (!defined(result)) {
result = new CustomPatternSensorGraphics();
}
result.directions = this.directions;
result.radius = this.radius;
result.show = this.show;
result.showIntersection = this.showIntersection;
result.intersectionColor = this.intersectionColor;
result.intersectionWidth = this.intersectionWidth;
result.lateralSurfaceMaterial = this.lateralSurfaceMaterial;
return result;
};
/**
* Assigns each unassigned property on this object to the value
* of the same property on the provided source object.
*
* @param {CustomPatternSensorGraphics} source The object to be merged into this object.
*/
CustomPatternSensorGraphics.prototype.merge = function(source) {
// >>includeStart('debug', pragmas.debug);
if (!defined(source)) {
throw new DeveloperError('source is required.');
}
// >>includeEnd('debug');
this.directions = defaultValue(this.directions, source.directions);
this.radius = defaultValue(this.radius, source.radius);
this.show = defaultValue(this.show, source.show);
this.showIntersection = defaultValue(this.showIntersection, source.showIntersection);
this.intersectionColor = defaultValue(this.intersectionColor, source.intersectionColor);
this.intersectionWidth = defaultValue(this.intersectionWidth, source.intersectionWidth);
this.lateralSurfaceMaterial = defaultValue(this.lateralSurfaceMaterial, source.lateralSurfaceMaterial);
};
const defaultIntersectionColor$1 = Color.WHITE;
const defaultIntersectionWidth$1 = 1.0;
const defaultRadius$1 = Number.POSITIVE_INFINITY;
const matrix3Scratch$1 = new Matrix3();
const cachedPosition$1 = new Cartesian3();
const cachedOrientation$1 = new Quaternion();
/**
* A {@link Visualizer} which maps {@link Entity#customPatternSensor} to a {@link CustomPatternSensor}.
* @alias CustomPatternSensorVisualizer
* @constructor
*
* @param {Scene} scene The scene the primitives will be rendered in.
* @param {EntityCollection} entityCollection The entityCollection to visualize.
*/
const CustomPatternSensorVisualizer = function(scene, entityCollection) {
// >>includeStart('debug', pragmas.debug);
if (!defined(scene)) {
throw new DeveloperError('scene is required.');
}
if (!defined(entityCollection)) {
throw new DeveloperError('entityCollection is required.');
}
// >>includeEnd('debug');
entityCollection.collectionChanged.addEventListener(CustomPatternSensorVisualizer.prototype._onCollectionChanged, this);
this._scene = scene;
this._primitives = scene.primitives;
this._entityCollection = entityCollection;
this._hash = {};
this._entitiesToVisualize = new AssociativeArray();
this._onCollectionChanged(entityCollection, entityCollection.values, [], []);
};
/**
* Updates the primitives created by this visualizer to match their
* Entity counterpart at the given time.
*
* @param {JulianDate} time The time to update to.
* @returns {Boolean} This function always returns true.
*/
CustomPatternSensorVisualizer.prototype.update = function(time) {
// >>includeStart('debug', pragmas.debug);
if (!defined(time)) {
throw new DeveloperError('time is required.');
}
// >>includeEnd('debug');
var entities = this._entitiesToVisualize.values;
var hash = this._hash;
var primitives = this._primitives;
for (var i = 0, len = entities.length; i < len; i++) {
var entity = entities[i];
var customPatternSensorGraphics = entity._customPatternSensor;
var position;
var orientation;
var directions;
var data = hash[entity.id];
var show = entity.isShowing && entity.isAvailable(time) && Property.getValueOrDefault(customPatternSensorGraphics._show, time, true);
if (show) {
position = Property.getValueOrUndefined(entity._position, time, cachedPosition$1);
orientation = Property.getValueOrUndefined(entity._orientation, time, cachedOrientation$1);
directions = Property.getValueOrUndefined(customPatternSensorGraphics._directions, time);
show = defined(position) && defined(orientation) && defined(directions);
}
if (!show) {
// don't bother creating or updating anything else
if (defined(data)) {
data.primitive.show = false;
}
continue;
}
var primitive = defined(data) ? data.primitive : undefined;
if (!defined(primitive)) {
primitive = new CustomSensorVolume();
primitive.id = entity;
primitives.add(primitive);
data = {
primitive: primitive,
position: undefined,
orientation: undefined
};
hash[entity.id] = data;
}
if (!Cartesian3.equals(position, data.position) || !Quaternion.equals(orientation, data.orientation)) {
Matrix4.fromRotationTranslation(Matrix3.fromQuaternion(orientation, matrix3Scratch$1), position, primitive.modelMatrix);
data.position = Cartesian3.clone(position, data.position);
data.orientation = Quaternion.clone(orientation, data.orientation);
}
primitive.show = true;
primitive.directions = directions;
primitive.radius = Property.getValueOrDefault(customPatternSensorGraphics._radius, time, defaultRadius$1);
primitive.lateralSurfaceMaterial = MaterialProperty.getValue(time, customPatternSensorGraphics._lateralSurfaceMaterial, primitive.lateralSurfaceMaterial);
primitive.intersectionColor = Property.getValueOrClonedDefault(customPatternSensorGraphics._intersectionColor, time, defaultIntersectionColor$1, primitive.intersectionColor);
primitive.intersectionWidth = Property.getValueOrDefault(customPatternSensorGraphics._intersectionWidth, time, defaultIntersectionWidth$1);
}
return true;
};
/**
* Returns true if this object was destroyed; otherwise, false.
*
* @returns {Boolean} True if this object was destroyed; otherwise, false.
*/
CustomPatternSensorVisualizer.prototype.isDestroyed = function() {
return false;
};
/**
* Removes and destroys all primitives created by this instance.
*/
CustomPatternSensorVisualizer.prototype.destroy = function() {
var entities = this._entitiesToVisualize.values;
var hash = this._hash;
var primitives = this._primitives;
for (var i = entities.length - 1; i > -1; i--) {
removePrimitive(entities[i], hash, primitives);
}
return destroyObject(this);
};
/**
* @private
*/
CustomPatternSensorVisualizer.prototype._onCollectionChanged = function(entityCollection, added, removed, changed) {
var i;
var entity;
var entities = this._entitiesToVisualize;
var hash = this._hash;
var primitives = this._primitives;
for (i = added.length - 1; i > -1; i--) {
entity = added[i];
if (defined(entity._customPatternSensor) && defined(entity._position) && defined(entity._orientation)) {
entities.set(entity.id, entity);
}
}
for (i = changed.length - 1; i > -1; i--) {
entity = changed[i];
if (defined(entity._customPatternSensor) && defined(entity._position) && defined(entity._orientation)) {
entities.set(entity.id, entity);
} else {
removePrimitive(entity, hash, primitives);
entities.remove(entity.id);
}
}
for (i = removed.length - 1; i > -1; i--) {
entity = removed[i];
removePrimitive(entity, hash, primitives);
entities.remove(entity.id);
}
};
/**
* An optionally time-dynamic pyramid.
*
* @alias RectangularSensorGraphics
* @constructor
*/
const RectangularSensorGraphics = function() {
this._xHalfAngle = undefined;
this._xHalfAngleSubscription = undefined;
this._yHalfAngle = undefined;
this._yHalfAngleSubscription = undefined;
this._lateralSurfaceMaterial = undefined;
this._lateralSurfaceMaterialSubscription = undefined;
this._intersectionColor = undefined;
this._intersectionColorSubscription = undefined;
this._intersectionWidth = undefined;
this._intersectionWidthSubscription = undefined;
this._showIntersection = undefined;
this._showIntersectionSubscription = undefined;
this._radius = undefined;
this._radiusSubscription = undefined;
this._show = undefined;
this._showSubscription = undefined;
this._definitionChanged = new Event();
};
Object.defineProperties(RectangularSensorGraphics.prototype, {
/**
* Gets the event that is raised whenever a new property is assigned.
* @memberof RectangularSensorGraphics.prototype
*
* @type {Event}
* @readonly
*/
definitionChanged: {
get: function() {
return this._definitionChanged;
}
},
/**
* A {@link Property} which returns an array of {@link Spherical} instances representing the pyramid's projection.
* @memberof RectangularSensorGraphics.prototype
* @type {Property}
*/
xHalfAngle: createPropertyDescriptor('xHalfAngle'),
/**
* A {@link Property} which returns an array of {@link Spherical} instances representing the pyramid's projection.
* @memberof RectangularSensorGraphics.prototype
* @type {Property}
*/
yHalfAngle: createPropertyDescriptor('yHalfAngle'),
/**
* Gets or sets the {@link MaterialProperty} specifying the the pyramid's appearance.
* @memberof RectangularSensorGraphics.prototype
* @type {MaterialProperty}
*/
lateralSurfaceMaterial: createPropertyDescriptor('lateralSurfaceMaterial'),
/**
* Gets or sets the {@link Color} {@link Property} specifying the color of the line formed by the intersection of the pyramid and other central bodies.
* @memberof RectangularSensorGraphics.prototype
* @type {Property}
*/
intersectionColor: createPropertyDescriptor('intersectionColor'),
/**
* Gets or sets the numeric {@link Property} specifying the width of the line formed by the intersection of the pyramid and other central bodies.
* @memberof RectangularSensorGraphics.prototype
* @type {Property}
*/
intersectionWidth: createPropertyDescriptor('intersectionWidth'),
/**
* Gets or sets the boolean {@link Property} specifying the visibility of the line formed by the intersection of the pyramid and other central bodies.
* @memberof RectangularSensorGraphics.prototype
* @type {Property}
*/
showIntersection: createPropertyDescriptor('showIntersection'),
/**
* Gets or sets the numeric {@link Property} specifying the radius of the pyramid's projection.
* @memberof RectangularSensorGraphics.prototype
* @type {Property}
*/
radius: createPropertyDescriptor('radius'),
/**
* Gets or sets the boolean {@link Property} specifying the visibility of the pyramid.
* @memberof RectangularSensorGraphics.prototype
* @type {Property}
*/
show: createPropertyDescriptor('show')
});
/**
* Duplicates a RectangularSensorGraphics instance.
*
* @param {RectangularSensorGraphics} [result] The object onto which to store the result.
* @returns {RectangularSensorGraphics} The modified result parameter or a new instance if one was not provided.
*/
RectangularSensorGraphics.prototype.clone = function(result) {
if (!defined(result)) {
result = new RectangularSensorGraphics();
}
result.xHalfAngle = this.xHalfAngle;
result.yHalfAngle = this.yHalfAngle;
result.radius = this.radius;
result.show = this.show;
result.showIntersection = this.showIntersection;
result.intersectionColor = this.intersectionColor;
result.intersectionWidth = this.intersectionWidth;
result.lateralSurfaceMaterial = this.lateralSurfaceMaterial;
return result;
};
/**
* Assigns each unassigned property on this object to the value
* of the same property on the provided source object.
*
* @param {RectangularSensorGraphics} source The object to be merged into this object.
*/
RectangularSensorGraphics.prototype.merge = function(source) {
// >>includeStart('debug', pragmas.debug);
if (!defined(source)) {
throw new DeveloperError('source is required.');
}
// >>includeEnd('debug');
this.xHalfAngle = defaultValue(this.xHalfAngle, source.xHalfAngle);
this.yHalfAngle = defaultValue(this.yHalfAngle, source.yHalfAngle);
this.radius = defaultValue(this.radius, source.radius);
this.show = defaultValue(this.show, source.show);
this.showIntersection = defaultValue(this.showIntersection, source.showIntersection);
this.intersectionColor = defaultValue(this.intersectionColor, source.intersectionColor);
this.intersectionWidth = defaultValue(this.intersectionWidth, source.intersectionWidth);
this.lateralSurfaceMaterial = defaultValue(this.lateralSurfaceMaterial, source.lateralSurfaceMaterial);
};
function assignSpherical(index, array, clock, cone) {
var spherical = array[index];
if (!defined(spherical)) {
spherical = new Spherical();
array[index] = spherical;
}
spherical.clock = clock;
spherical.cone = cone;
spherical.magnitude = 1.0;
}
function updateDirections(rectangularSensor) {
var directions = rectangularSensor._customSensor.directions;
// At 90 degrees the sensor is completely open, and tan() goes to infinity.
var tanX = Math.tan(Math.min(rectangularSensor._xHalfAngle, CesiumMath.toRadians(89.0)));
var tanY = Math.tan(Math.min(rectangularSensor._yHalfAngle, CesiumMath.toRadians(89.0)));
var theta = Math.atan(tanX / tanY);
var cone = Math.atan(Math.sqrt((tanX * tanX) + (tanY * tanY)));
assignSpherical(0, directions, theta, cone);
assignSpherical(1, directions, CesiumMath.toRadians(180.0) - theta, cone);
assignSpherical(2, directions, CesiumMath.toRadians(180.0) + theta, cone);
assignSpherical(3, directions, -theta, cone);
directions.length = 4;
rectangularSensor._customSensor.directions = directions;
}
const RectangularPyramidSensorVolume = function(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
var customSensorOptions = clone(options);
customSensorOptions._pickPrimitive = defaultValue(options._pickPrimitive, this);
customSensorOptions.directions = undefined;
this._customSensor = new CustomSensorVolume(customSensorOptions);
this._xHalfAngle = defaultValue(options.xHalfAngle, CesiumMath.PI_OVER_TWO);
this._yHalfAngle = defaultValue(options.yHalfAngle, CesiumMath.PI_OVER_TWO);
updateDirections(this);
};
Object.defineProperties(RectangularPyramidSensorVolume.prototype, {
xHalfAngle: {
get: function() {
return this._xHalfAngle;
},
set: function(value) {
// >>includeStart('debug', pragmas.debug)
if (value > CesiumMath.PI_OVER_TWO) {
throw new DeveloperError('xHalfAngle must be less than or equal to 90 degrees.');
}
// >>includeEnd('debug');
if (this._xHalfAngle !== value) {
this._xHalfAngle = value;
updateDirections(this);
}
}
},
yHalfAngle: {
get: function() {
return this._yHalfAngle;
},
set: function(value) {
// >>includeStart('debug', pragmas.debug)
if (value > CesiumMath.PI_OVER_TWO) {
throw new DeveloperError('yHalfAngle must be less than or equal to 90 degrees.');
}
// >>includeEnd('debug');
if (this._yHalfAngle !== value) {
this._yHalfAngle = value;
updateDirections(this);
}
}
},
show: {
get: function() {
return this._customSensor.show;
},
set: function(value) {
this._customSensor.show = value;
}
},
showIntersection: {
get: function() {
return this._customSensor.showIntersection;
},
set: function(value) {
this._customSensor.showIntersection = value;
}
},
showThroughEllipsoid: {
get: function() {
return this._customSensor.showThroughEllipsoid;
},
set: function(value) {
this._customSensor.showThroughEllipsoid = value;
}
},
modelMatrix: {
get: function() {
return this._customSensor.modelMatrix;
},
set: function(value) {
this._customSensor.modelMatrix = value;
}
},
radius: {
get: function() {
return this._customSensor.radius;
},
set: function(value) {
this._customSensor.radius = value;
}
},
lateralSurfaceMaterial: {
get: function() {
return this._customSensor.lateralSurfaceMaterial;
},
set: function(value) {
this._customSensor.lateralSurfaceMaterial = value;
}
},
intersectionColor: {
get: function() {
return this._customSensor.intersectionColor;
},
set: function(value) {
this._customSensor.intersectionColor = value;
}
},
intersectionWidth: {
get: function() {
return this._customSensor.intersectionWidth;
},
set: function(value) {
this._customSensor.intersectionWidth = value;
}
},
id: {
get: function() {
return this._customSensor.id;
},
set: function(value) {
this._customSensor.id = value;
}
}
});
RectangularPyramidSensorVolume.prototype.update = function(frameState) {
this._customSensor.update(frameState);
};
RectangularPyramidSensorVolume.prototype.isDestroyed = function() {
return false;
};
RectangularPyramidSensorVolume.prototype.destroy = function() {
this._customSensor = this._customSensor && this._customSensor.destroy();
return destroyObject(this);
};
const defaultIntersectionColor = Color.WHITE;
const defaultIntersectionWidth = 1.0;
const defaultRadius = Number.POSITIVE_INFINITY;
const matrix3Scratch = new Matrix3();
const cachedPosition = new Cartesian3();
const cachedOrientation = new Quaternion();
/**
* A {@link Visualizer} which maps {@link Entity#rectangularSensor} to a {@link RectangularSensor}.
* @alias RectangularSensorVisualizer
* @constructor
*
* @param {Scene} scene The scene the primitives will be rendered in.
* @param {EntityCollection} entityCollection The entityCollection to visualize.
*/
const RectangularSensorVisualizer = function(scene, entityCollection) {
// >>includeStart('debug', pragmas.debug);
if (!defined(scene)) {
throw new DeveloperError('scene is required.');
}
if (!defined(entityCollection)) {
throw new DeveloperError('entityCollection is required.');
}
// >>includeEnd('debug');
entityCollection.collectionChanged.addEventListener(RectangularSensorVisualizer.prototype._onCollectionChanged, this);
this._scene = scene;
this._primitives = scene.primitives;
this._entityCollection = entityCollection;
this._hash = {};
this._entitiesToVisualize = new AssociativeArray();
this._onCollectionChanged(entityCollection, entityCollection.values, [], []);
};
/**
* Updates the primitives created by this visualizer to match their
* Entity counterpart at the given time.
*
* @param {JulianDate} time The time to update to.
* @returns {Boolean} This function always returns true.
*/
RectangularSensorVisualizer.prototype.update = function(time) {
// >>includeStart('debug', pragmas.debug);
if (!defined(time)) {
throw new DeveloperError('time is required.');
}
// >>includeEnd('debug');
var entities = this._entitiesToVisualize.values;
var hash = this._hash;
var primitives = this._primitives;
for (var i = 0, len = entities.length; i < len; i++) {
var entity = entities[i];
var rectangularSensorGraphics = entity._rectangularSensor;
var position;
var orientation;
var data = hash[entity.id];
var show = entity.isShowing && entity.isAvailable(time) && Property.getValueOrDefault(rectangularSensorGraphics._show, time, true);
if (show) {
position = Property.getValueOrUndefined(entity._position, time, cachedPosition);
orientation = Property.getValueOrUndefined(entity._orientation, time, cachedOrientation);
show = defined(position) && defined(orientation);
}
if (!show) {
// don't bother creating or updating anything else
if (defined(data)) {
data.primitive.show = false;
}
continue;
}
var primitive = defined(data) ? data.primitive : undefined;
if (!defined(primitive)) {
primitive = new RectangularPyramidSensorVolume();
primitive.id = entity;
primitives.add(primitive);
data = {
primitive: primitive,
position: undefined,
orientation: undefined
};
hash[entity.id] = data;
}
if (!Cartesian3.equals(position, data.position) || !Quaternion.equals(orientation, data.orientation)) {
Matrix4.fromRotationTranslation(Matrix3.fromQuaternion(orientation, matrix3Scratch), position, primitive.modelMatrix);
data.position = Cartesian3.clone(position, data.position);
data.orientation = Quaternion.clone(orientation, data.orientation);
}
primitive.show = true;
primitive.xHalfAngle = Property.getValueOrDefault(rectangularSensorGraphics._xHalfAngle, time, CesiumMath.PI_OVER_TWO);
primitive.yHalfAngle = Property.getValueOrDefault(rectangularSensorGraphics._yHalfAngle, time, CesiumMath.PI_OVER_TWO);
primitive.radius = Property.getValueOrDefault(rectangularSensorGraphics._radius, time, defaultRadius);
primitive.lateralSurfaceMaterial = MaterialProperty.getValue(time, rectangularSensorGraphics._lateralSurfaceMaterial, primitive.lateralSurfaceMaterial);
primitive.intersectionColor = Property.getValueOrClonedDefault(rectangularSensorGraphics._intersectionColor, time, defaultIntersectionColor, primitive.intersectionColor);
primitive.intersectionWidth = Property.getValueOrDefault(rectangularSensorGraphics._intersectionWidth, time, defaultIntersectionWidth);
}
return true;
};
/**
* Returns true if this object was destroyed; otherwise, false.
*
* @returns {Boolean} True if this object was destroyed; otherwise, false.
*/
RectangularSensorVisualizer.prototype.isDestroyed = function() {
return false;
};
/**
* Removes and destroys all primitives created by this instance.
*/
RectangularSensorVisualizer.prototype.destroy = function() {
var entities = this._entitiesToVisualize.values;
var hash = this._hash;
var primitives = this._primitives;
for (var i = entities.length - 1; i > -1; i--) {
removePrimitive(entities[i], hash, primitives);
}
return destroyObject(this);
};
/**
* @private
*/
RectangularSensorVisualizer.prototype._onCollectionChanged = function(entityCollection, added, removed, changed) {
var i;
var entity;
var entities = this._entitiesToVisualize;
var hash = this._hash;
var primitives = this._primitives;
for (i = added.length - 1; i > -1; i--) {
entity = added[i];
if (defined(entity._rectangularSensor) && defined(entity._position) && defined(entity._orientation)) {
entities.set(entity.id, entity);
}
}
for (i = changed.length - 1; i > -1; i--) {
entity = changed[i];
if (defined(entity._rectangularSensor) && defined(entity._position) && defined(entity._orientation)) {
entities.set(entity.id, entity);
} else {
removePrimitive(entity, hash, primitives);
entities.remove(entity.id);
}
}
for (i = removed.length - 1; i > -1; i--) {
entity = removed[i];
removePrimitive(entity, hash, primitives);
entities.remove(entity.id);
}
};
var processPacketData = CzmlDataSource.processPacketData;
var processMaterialPacketData = CzmlDataSource.processMaterialPacketData;
// eslint-disable-next-line max-params
function processDirectionData(customPatternSensor, directions, interval, sourceUri, entityCollection) {
var i;
var len;
var values = [];
var unitSphericals = directions.unitSpherical;
var sphericals = directions.spherical;
var unitCartesians = directions.unitCartesian;
var cartesians = directions.cartesian;
if (defined(unitSphericals)) {
for (i = 0, len = unitSphericals.length; i < len; i += 2) {
values.push(new Spherical(unitSphericals[i], unitSphericals[i + 1]));
}
directions.array = values;
} else if (defined(sphericals)) {
for (i = 0, len = sphericals.length; i < len; i += 3) {
values.push(new Spherical(sphericals[i], sphericals[i + 1], sphericals[i + 2]));
}
directions.array = values;
} else if (defined(unitCartesians)) {
for (i = 0, len = unitCartesians.length; i < len; i += 3) {
var tmp = Spherical.fromCartesian3(new Cartesian3(unitCartesians[i], unitCartesians[i + 1], unitCartesians[i + 2]));
Spherical.normalize(tmp, tmp);
values.push(tmp);
}
directions.array = values;
} else if (defined(cartesians)) {
for (i = 0, len = cartesians.length; i < len; i += 3) {
values.push(Spherical.fromCartesian3(new Cartesian3(cartesians[i], cartesians[i + 1], cartesians[i + 2])));
}
directions.array = values;
}
processPacketData(Array, customPatternSensor, 'directions', directions, interval, sourceUri, entityCollection);
}
// eslint-disable-next-line max-params
function processCommonSensorProperties(sensor, sensorData, interval, sourceUri, entityCollection) {
processPacketData(Boolean, sensor, 'show', sensorData.show, interval, sourceUri, entityCollection);
processPacketData(Number, sensor, 'radius', sensorData.radius, interval, sourceUri, entityCollection);
processPacketData(Boolean, sensor, 'showIntersection', sensorData.showIntersection, interval, sourceUri, entityCollection);
processPacketData(Color, sensor, 'intersectionColor', sensorData.intersectionColor, interval, sourceUri, entityCollection);
processPacketData(Number, sensor, 'intersectionWidth', sensorData.intersectionWidth, interval, sourceUri, entityCollection);
processMaterialPacketData(sensor, 'lateralSurfaceMaterial', sensorData.lateralSurfaceMaterial, interval, sourceUri, entityCollection);
}
var iso8601Scratch = {
iso8601: undefined
};
function processConicSensor(entity, packet, entityCollection, sourceUri) {
var conicSensorData = packet.agi_conicSensor;
if (!defined(conicSensorData)) {
return;
}
var interval;
var intervalString = conicSensorData.interval;
if (defined(intervalString)) {
iso8601Scratch.iso8601 = intervalString;
interval = TimeInterval.fromIso8601(iso8601Scratch);
}
var conicSensor = entity.conicSensor;
if (!defined(conicSensor)) {
entity.addProperty('conicSensor');
conicSensor = new ConicSensorGraphics();
entity.conicSensor = conicSensor;
}
processCommonSensorProperties(conicSensor, conicSensorData, interval, sourceUri, entityCollection);
processPacketData(Number, conicSensor, 'innerHalfAngle', conicSensorData.innerHalfAngle, interval, sourceUri, entityCollection);
processPacketData(Number, conicSensor, 'outerHalfAngle', conicSensorData.outerHalfAngle, interval, sourceUri, entityCollection);
processPacketData(Number, conicSensor, 'minimumClockAngle', conicSensorData.minimumClockAngle, interval, sourceUri, entityCollection);
processPacketData(Number, conicSensor, 'maximumClockAngle', conicSensorData.maximumClockAngle, interval, sourceUri, entityCollection);
}
function processCustomPatternSensor(entity, packet, entityCollection, sourceUri) {
var customPatternSensorData = packet.agi_customPatternSensor;
if (!defined(customPatternSensorData)) {
return;
}
var interval;
var intervalString = customPatternSensorData.interval;
if (defined(intervalString)) {
iso8601Scratch.iso8601 = intervalString;
interval = TimeInterval.fromIso8601(iso8601Scratch);
}
var customPatternSensor = entity.customPatternSensor;
if (!defined(customPatternSensor)) {
entity.addProperty('customPatternSensor');
customPatternSensor = new CustomPatternSensorGraphics();
entity.customPatternSensor = customPatternSensor;
}
processCommonSensorProperties(customPatternSensor, customPatternSensorData, interval, sourceUri, entityCollection);
// The directions property is a special case value that can be an array of unitSpherical or unit Cartesians.
// We pre-process this into Spherical instances and then process it like any other array.
var directions = customPatternSensorData.directions;
if (defined(directions)) {
if (Array.isArray(directions)) {
var length = directions.length;
for (var i = 0; i < length; i++) {
processDirectionData(customPatternSensor, directions[i], interval, sourceUri, entityCollection);
}
} else {
processDirectionData(customPatternSensor, directions, interval, sourceUri, entityCollection);
}
}
}
function processRectangularSensor(entity, packet, entityCollection, sourceUri) {
var rectangularSensorData = packet.agi_rectangularSensor;
if (!defined(rectangularSensorData)) {
return;
}
var interval;
var intervalString = rectangularSensorData.interval;
if (defined(intervalString)) {
iso8601Scratch.iso8601 = intervalString;
interval = TimeInterval.fromIso8601(iso8601Scratch);
}
var rectangularSensor = entity.rectangularSensor;
if (!defined(rectangularSensor)) {
entity.addProperty('rectangularSensor');
rectangularSensor = new RectangularSensorGraphics();
entity.rectangularSensor = rectangularSensor;
}
processCommonSensorProperties(rectangularSensor, rectangularSensorData, interval, sourceUri, entityCollection);
processPacketData(Number, rectangularSensor, 'xHalfAngle', rectangularSensorData.xHalfAngle, interval, sourceUri, entityCollection);
processPacketData(Number, rectangularSensor, 'yHalfAngle', rectangularSensorData.yHalfAngle, interval, sourceUri, entityCollection);
}
var initialized = false;
function initialize() {
if (initialized) {
return;
}
CzmlDataSource.updaters.push(processConicSensor, processCustomPatternSensor, processRectangularSensor);
var originalDefaultVisualizersCallback = DataSourceDisplay.defaultVisualizersCallback;
DataSourceDisplay.defaultVisualizersCallback = function(scene, entityCluster, dataSource) {
var entities = dataSource.entities;
var array = originalDefaultVisualizersCallback(scene, entityCluster, dataSource);
return array.concat([
new ConicSensorVisualizer(scene, entities),
new CustomPatternSensorVisualizer(scene, entities),
new RectangularSensorVisualizer(scene, entities)
]);
};
initialized = true;
}
initialize();
var cesiumSensorVolumes = {
ConicSensorGraphics,
ConicSensorVisualizer,
CustomPatternSensorGraphics,
CustomPatternSensorVisualizer,
CustomSensorVolume,
RectangularPyramidSensorVolume,
RectangularSensorGraphics,
RectangularSensorVisualizer
};
return cesiumSensorVolumes;
}));