(function (global, factory) {
	typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
	typeof define === 'function' && define.amd ? define(factory) :
	(global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.CesiumSensorVolumes = factory());
})(this, (function () { 'use strict';

	/**
	 * Cesium Sensor Volumes - https://github.com/Flowm/cesium-sensor-volumes
	 *
	 * Copyright 2016 Jonathan Lounsbury
	 * Copyright 2011-2014 Analytical Graphics Inc. and Cesium Contributors
	 *
	 * Licensed under the Apache License, Version 2.0 (the "License");
	 * you may not use this file except in compliance with the License.
	 * You may obtain a copy of the License at
	 *
	 * http://www.apache.org/licenses/LICENSE-2.0
	 *
	 * Unless required by applicable law or agreed to in writing, software
	 * distributed under the License is distributed on an "AS IS" BASIS,
	 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	 * See the License for the specific language governing permissions and
	 * limitations under the License.
	 *
	 * Portions licensed separately.
	 * See https://github.com/Flowm/cesium-sensor-volumes/blob/master/LICENSE.md for full licensing details.
	 *
	 * Derived from Cesium Sensors - https://github.com/AnalyticalGraphicsInc/cesium-sensors
	 */

	const Cartesian3 = Cesium['Cartesian3'];
	const Color = Cesium['Color'];
	const defined = Cesium['defined'];
	const Spherical = Cesium['Spherical'];
	const TimeInterval = Cesium['TimeInterval'];
	const CzmlDataSource = Cesium['CzmlDataSource'];
	const DataSourceDisplay = Cesium['DataSourceDisplay'];
	const defaultValue = Cesium['defaultValue'];
	const DeveloperError = Cesium['DeveloperError'];
	const Event = Cesium['Event'];
	const createMaterialPropertyDescriptor = Cesium['createMaterialPropertyDescriptor'];
	const createPropertyDescriptor = Cesium['createPropertyDescriptor'];
	const AssociativeArray = Cesium['AssociativeArray'];
	const destroyObject = Cesium['destroyObject'];
	const CesiumMath = Cesium['Math'];
	const Matrix3 = Cesium['Matrix3'];
	const Matrix4 = Cesium['Matrix4'];
	const Quaternion = Cesium['Quaternion'];
	const MaterialProperty = Cesium['MaterialProperty'];
	const Property = Cesium['Property'];
	const BoundingSphere = Cesium['BoundingSphere'];
	const combine = Cesium['combine'];
	const ComponentDatatype = Cesium['ComponentDatatype'];
	const PrimitiveType = Cesium['PrimitiveType'];
	const Buffer = Cesium['Buffer'];
	const BufferUsage = Cesium['BufferUsage'];
	const DrawCommand = Cesium['DrawCommand'];
	const Pass = Cesium['Pass'];
	const RenderState = Cesium['RenderState'];
	const ShaderProgram = Cesium['ShaderProgram'];
	const ShaderSource = Cesium['ShaderSource'];
	const VertexArray = Cesium['VertexArray'];
	const BlendingState = Cesium['BlendingState'];
	const CullFace = Cesium['CullFace'];
	const Material = Cesium['Material'];
	const SceneMode = Cesium['SceneMode'];
	const clone = Cesium['clone'];

	/**
	 * An optionally time-dynamic cone.
	 *
	 * @alias ConicSensorGraphics
	 * @constructor
	 */
	const ConicSensorGraphics = function(options) {
		this._minimumClockAngle = undefined;
		this._minimumClockAngleSubscription = undefined;
		this._maximumClockAngle = undefined;
		this._maximumClockAngleSubscription = undefined;
		this._innerHalfAngle = undefined;
		this._innerHalfAngleSubscription = undefined;
		this._outerHalfAngle = undefined;
		this._outerHalfAngleSubscription = undefined;
		this._lateralSurfaceMaterial = undefined;
		this._lateralSurfaceMaterialSubscription = undefined;
		this._intersectionColor = undefined;
		this._intersectionColorSubscription = undefined;
		this._intersectionWidth = undefined;
		this._intersectionWidthSubscription = undefined;
		this._showIntersection = undefined;
		this._showIntersectionSubscription = undefined;
		this._radius = undefined;
		this._radiusSubscription = undefined;
		this._show = undefined;
		this._showSubscription = undefined;
		this._definitionChanged = new Event();

		this.merge(defaultValue(options, defaultValue.EMPTY_OBJECT));
	};

	Object.defineProperties(ConicSensorGraphics.prototype, {
		/**
		 * Gets the event that is raised whenever a new property is assigned.
		 * @memberof ConicSensorGraphics.prototype
		 *
		 * @type {Event}
		 * @readonly
		 */
		definitionChanged: {
			get: function() {
				return this._definitionChanged;
			}
		},

		/**
		 * Gets or sets the numeric {@link Property} specifying the the cone's minimum clock angle.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		minimumClockAngle: createPropertyDescriptor('minimumClockAngle'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the the cone's maximum clock angle.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		maximumClockAngle: createPropertyDescriptor('maximumClockAngle'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the the cone's inner half-angle.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		innerHalfAngle: createPropertyDescriptor('innerHalfAngle'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the the cone's outer half-angle.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		outerHalfAngle: createPropertyDescriptor('outerHalfAngle'),

		/**
		 * Gets or sets the {@link MaterialProperty} specifying the the cone's appearance.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {MaterialProperty}
		 */
		lateralSurfaceMaterial: createMaterialPropertyDescriptor('lateralSurfaceMaterial'),

		/**
		 * Gets or sets the {@link Color} {@link Property} specifying the color of the line formed by the intersection of the cone and other central bodies.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		intersectionColor: createPropertyDescriptor('intersectionColor'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the width of the line formed by the intersection of the cone and other central bodies.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		intersectionWidth: createPropertyDescriptor('intersectionWidth'),

		/**
		 * Gets or sets the boolean {@link Property} specifying the visibility of the line formed by the intersection of the cone and other central bodies.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		showIntersection: createPropertyDescriptor('showIntersection'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the radius of the cone's projection.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		radius: createPropertyDescriptor('radius'),

		/**
		 * Gets or sets the boolean {@link Property} specifying the visibility of the cone.
		 * @memberof ConicSensorGraphics.prototype
		 * @type {Property}
		 */
		show: createPropertyDescriptor('show')
	});

	/**
	 * Duplicates a ConicSensorGraphics instance.
	 *
	 * @param {ConicSensorGraphics} [result] The object onto which to store the result.
	 * @returns {ConicSensorGraphics} The modified result parameter or a new instance if one was not provided.
	 */
	ConicSensorGraphics.prototype.clone = function(result) {
		if (!defined(result)) {
			result = new ConicSensorGraphics();
		}
		result.show = this.show;
		result.innerHalfAngle = this.innerHalfAngle;
		result.outerHalfAngle = this.outerHalfAngle;
		result.minimumClockAngle = this.minimumClockAngle;
		result.maximumClockAngle = this.maximumClockAngle;
		result.radius = this.radius;
		result.showIntersection = this.showIntersection;
		result.intersectionColor = this.intersectionColor;
		result.intersectionWidth = this.intersectionWidth;
		result.lateralSurfaceMaterial = this.lateralSurfaceMaterial;
		return result;
	};

	/**
	 * Assigns each unassigned property on this object to the value
	 * of the same property on the provided source object.
	 *
	 * @param {ConicSensorGraphics} source The object to be merged into this object.
	 */
	ConicSensorGraphics.prototype.merge = function(source) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(source)) {
			throw new DeveloperError('source is required.');
		}
		// >>includeEnd('debug');

		this.show = defaultValue(this.show, source.show);
		this.innerHalfAngle = defaultValue(this.innerHalfAngle, source.innerHalfAngle);
		this.outerHalfAngle = defaultValue(this.outerHalfAngle, source.outerHalfAngle);
		this.minimumClockAngle = defaultValue(this.minimumClockAngle, source.minimumClockAngle);
		this.maximumClockAngle = defaultValue(this.maximumClockAngle, source.maximumClockAngle);
		this.radius = defaultValue(this.radius, source.radius);
		this.showIntersection = defaultValue(this.showIntersection, source.showIntersection);
		this.intersectionColor = defaultValue(this.intersectionColor, source.intersectionColor);
		this.intersectionWidth = defaultValue(this.intersectionWidth, source.intersectionWidth);
		this.lateralSurfaceMaterial = defaultValue(this.lateralSurfaceMaterial, source.lateralSurfaceMaterial);
	};

	var SensorVolume = "#version 300 es\n\nuniform vec4 u_intersectionColor;\nuniform float u_intersectionWidth;\n\nbool inSensorShadow(vec3 coneVertexWC, vec3 pointWC)\n{\n    \n    vec3 D = czm_ellipsoidInverseRadii;\n\n    \n    vec3 q = D * coneVertexWC;\n    float qMagnitudeSquared = dot(q, q);\n    float test = qMagnitudeSquared - 1.0;\n\n    \n    vec3 temp = D * pointWC - q;\n    float d = dot(temp, q);\n\n    \n    return (d < -test) && (d / length(temp) < -sqrt(test));\n}\n\nvec4 getIntersectionColor()\n{\n    return u_intersectionColor;\n}\n\nfloat getIntersectionWidth()\n{\n    return u_intersectionWidth;\n}\n\nvec2 sensor2dTextureCoordinates(float sensorRadius, vec3 pointMC)\n{\n    \n    float t = pointMC.z / sensorRadius;\n    float s = 1.0 + (atan(pointMC.y, pointMC.x) / czm_twoPi);\n    s = s - floor(s);\n\n    return vec2(s, t);\n}\n";

	var CustomSensorVolumeFS = "#version 300 es\n\nuniform bool u_showIntersection;\nuniform bool u_showThroughEllipsoid;\n\nuniform float u_sensorRadius;\nuniform float u_normalDirection;\n\nin vec3 v_positionWC;\nin vec3 v_positionEC;\nin vec3 v_normalEC;\n\nvec4 getColor(float sensorRadius, vec3 pointEC)\n{\n    czm_materialInput materialInput;\n\n    vec3 pointMC = (czm_inverseModelView * vec4(pointEC, 1.0)).xyz;\n    materialInput.st = sensor2dTextureCoordinates(sensorRadius, pointMC);\n    materialInput.str = pointMC / sensorRadius;\n\n    vec3 positionToEyeEC = -v_positionEC;\n    materialInput.positionToEyeEC = positionToEyeEC;\n\n    vec3 normalEC = normalize(v_normalEC);\n    materialInput.normalEC = u_normalDirection * normalEC;\n\n    czm_material material = czm_getMaterial(materialInput);\n    return mix(czm_phong(normalize(positionToEyeEC), material, czm_lightDirectionEC), vec4(material.diffuse, material.alpha), 0.4);\n}\n\nbool isOnBoundary(float value, float epsilon)\n{\n    float width = getIntersectionWidth();\n    float tolerance = width * epsilon;\n\n    float delta = max(abs(dFdx(value)), abs(dFdy(value)));\n    float pixels = width * delta;\n    float temp = abs(value);\n    \n    \n    \n    \n    \n    \n    \n    return temp < tolerance && temp < pixels || (delta < 10.0 * tolerance && temp - delta < tolerance && temp < pixels);\n}\n\nvec4 shade(bool isOnBoundary)\n{\n    if (u_showIntersection && isOnBoundary)\n    {\n        return getIntersectionColor();\n    }\n    return getColor(u_sensorRadius, v_positionEC);\n}\n\nfloat ellipsoidSurfaceFunction(vec3 point)\n{\n    vec3 scaled = czm_ellipsoidInverseRadii * point;\n    return dot(scaled, scaled) - 1.0;\n}\n\nvoid main()\n{\n    vec3 sensorVertexWC = czm_model[3].xyz;      \n    vec3 sensorVertexEC = czm_modelView[3].xyz;  \n\n    float ellipsoidValue = ellipsoidSurfaceFunction(v_positionWC);\n\n    \n    if (!u_showThroughEllipsoid)\n    {\n        \n        \n        if (ellipsoidValue < 0.0)\n        {\n            discard;\n        }\n\n        \n        if (inSensorShadow(sensorVertexWC, v_positionWC))\n        {\n            discard;\n        }\n    }\n\n    \n    \n    if (distance(v_positionEC, sensorVertexEC) > u_sensorRadius)\n    {\n        discard;\n    }\n\n    \n    bool isOnEllipsoid = isOnBoundary(ellipsoidValue, czm_epsilon3);\n    out_FragColor = shade(isOnEllipsoid);\n}\n";

	var CustomSensorVolumeVS = "#version 300 es\n\nin vec4 position;\nin vec3 normal;\n\nout vec3 v_positionWC;\nout vec3 v_positionEC;\nout vec3 v_normalEC;\n\nvoid main()\n{\n    gl_Position = czm_modelViewProjection * position;\n    v_positionWC = (czm_model * position).xyz;\n    v_positionEC = (czm_modelView * position).xyz;\n    v_normalEC = czm_normal * normal;\n}\n";

	const attributeLocations = {
		position: 0,
		normal: 1
	};

	const FAR = 5906376272000.0;  // distance from the Sun to Pluto in meters.

	/**
	 * DOC_TBA
	 *
	 * @alias CustomSensorVolume
	 * @constructor
	 */
	const CustomSensorVolume = function(options) {
		options = defaultValue(options, defaultValue.EMPTY_OBJECT);

		this._pickId = undefined;
		this._pickPrimitive = defaultValue(options._pickPrimitive, this);

		this._frontFaceColorCommand = new DrawCommand();
		this._backFaceColorCommand = new DrawCommand();
		this._pickCommand = new DrawCommand();

		this._boundingSphere = new BoundingSphere();
		this._boundingSphereWC = new BoundingSphere();

		this._frontFaceColorCommand.primitiveType = PrimitiveType.TRIANGLES;
		this._frontFaceColorCommand.boundingVolume = this._boundingSphereWC;
		this._frontFaceColorCommand.owner = this;

		this._backFaceColorCommand.primitiveType = this._frontFaceColorCommand.primitiveType;
		this._backFaceColorCommand.boundingVolume = this._frontFaceColorCommand.boundingVolume;
		this._backFaceColorCommand.owner = this;

		this._pickCommand.primitiveType = this._frontFaceColorCommand.primitiveType;
		this._pickCommand.boundingVolume = this._frontFaceColorCommand.boundingVolume;
		this._pickCommand.owner = this;

		/**
		 * <code>true</code> if this sensor will be shown; otherwise, <code>false</code>
		 *
		 * @type {Boolean}
		 * @default true
		 */
		this.show = defaultValue(options.show, true);

		/**
		 * When <code>true</code>, a polyline is shown where the sensor outline intersections the globe.
		 *
		 * @type {Boolean}
		 *
		 * @default true
		 *
		 * @see CustomSensorVolume#intersectionColor
		 */
		this.showIntersection = defaultValue(options.showIntersection, true);

		/**
		 * <p>
		 * Determines if a sensor intersecting the ellipsoid is drawn through the ellipsoid and potentially out
		 * to the other side, or if the part of the sensor intersecting the ellipsoid stops at the ellipsoid.
		 * </p>
		 *
		 * @type {Boolean}
		 * @default false
		 */
		this.showThroughEllipsoid = defaultValue(options.showThroughEllipsoid, false);
		this._showThroughEllipsoid = this.showThroughEllipsoid;

		/**
		 * The 4x4 transformation matrix that transforms this sensor from model to world coordinates.  In it's model
		 * coordinates, the sensor's principal direction is along the positive z-axis.  The clock angle, sometimes
		 * called azimuth, is the angle in the sensor's X-Y plane measured from the positive X-axis toward the positive
		 * Y-axis.  The cone angle, sometimes called elevation, is the angle out of the X-Y plane along the positive Z-axis.
		 * <br /><br />
		 * <div align='center'>
		 * <img src='images/CustomSensorVolume.setModelMatrix.png' /><br />
		 * Model coordinate system for a custom sensor
		 * </div>
		 *
		 * @type {Matrix4}
		 * @default {@link Matrix4.IDENTITY}
		 *
		 * @example
		 * // The sensor's vertex is located on the surface at -75.59777 degrees longitude and 40.03883 degrees latitude.
		 * // The sensor's opens upward, along the surface normal.
		 * var center = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883);
		 * sensor.modelMatrix = Cesium.Transforms.eastNorthUpToFixedFrame(center);
		 */
		this.modelMatrix = Matrix4.clone(defaultValue(options.modelMatrix, Matrix4.IDENTITY));
		this._modelMatrix = new Matrix4();

		/**
		 * DOC_TBA
		 *
		 * @type {Number}
		 * @default {@link Number.POSITIVE_INFINITY}
		 */
		this.radius = defaultValue(options.radius, Number.POSITIVE_INFINITY);

		this._directions = undefined;
		this._directionsDirty = false;
		this.directions = defined(options.directions) ? options.directions : [];

		/**
		 * The surface appearance of the sensor.  This can be one of several built-in {@link Material} objects or a custom material, scripted with
		 * {@link https://github.com/AnalyticalGraphicsInc/cesium/wiki/Fabric|Fabric}.
		 * <p>
		 * The default material is <code>Material.ColorType</code>.
		 * </p>
		 *
		 * @type {Material}
		 * @default Material.fromType(Material.ColorType)
		 *
		 * @see {@link https://github.com/AnalyticalGraphicsInc/cesium/wiki/Fabric|Fabric}
		 *
		 * @example
		 * // 1. Change the color of the default material to yellow
		 * sensor.lateralSurfaceMaterial.uniforms.color = new Cesium.Color(1.0, 1.0, 0.0, 1.0);
		 *
		 * // 2. Change material to horizontal stripes
		 * sensor.lateralSurfaceMaterial = Cesium.Material.fromType(Material.StripeType);
		 */
		this.lateralSurfaceMaterial = defined(options.lateralSurfaceMaterial) ? options.lateralSurfaceMaterial : Material.fromType(Material.ColorType);
		this._lateralSurfaceMaterial = undefined;
		this._translucent = undefined;

		/**
		 * The color of the polyline where the sensor outline intersects the globe.  The default is {@link Color.WHITE}.
		 *
		 * @type {Color}
		 * @default {@link Color.WHITE}
		 *
		 * @see CustomSensorVolume#showIntersection
		 */
		this.intersectionColor = Color.clone(defaultValue(options.intersectionColor, Color.WHITE));

		/**
		 * The approximate pixel width of the polyline where the sensor outline intersects the globe.  The default is 5.0.
		 *
		 * @type {Number}
		 * @default 5.0
		 *
		 * @see CustomSensorVolume#showIntersection
		 */
		this.intersectionWidth = defaultValue(options.intersectionWidth, 5.0);

		/**
		 * User-defined object returned when the sensors is picked.
		 *
		 * @type Object
		 *
		 * @default undefined
		 *
		 * @see Scene#pick
		 */
		this.id = options.id;
		this._id = undefined;

		var that = this;

		/* eslint-disable camelcase */
		this._uniforms = {
			u_showThroughEllipsoid: function() {
				return that.showThroughEllipsoid;
			},
			u_showIntersection: function() {
				return that.showIntersection;
			},
			u_sensorRadius: function() {
				return isFinite(that.radius) ? that.radius : FAR;
			},
			u_intersectionColor: function() {
				return that.intersectionColor;
			},
			u_intersectionWidth: function() {
				return that.intersectionWidth;
			},
			u_normalDirection: function() {
				return 1.0;
			}
		};
		/* eslint-enable camelcase */

		this._mode = SceneMode.SCENE3D;
	};

	Object.defineProperties(CustomSensorVolume.prototype, {
		directions: {
			get: function() {
				return this._directions;
			},
			set: function(value) {
				this._directions = value;
				this._directionsDirty = true;
			}
		}
	});

	const n0Scratch = new Cartesian3();
	const n1Scratch = new Cartesian3();
	const n2Scratch = new Cartesian3();
	function computePositions(customSensorVolume) {
		var directions = customSensorVolume._directions;
		var length = directions.length;
		var positions = new Float32Array(3 * length);
		var r = isFinite(customSensorVolume.radius) ? customSensorVolume.radius : FAR;

		var boundingVolumePositions = [Cartesian3.ZERO];

		for (var i = length - 2, j = length - 1, k = 0; k < length; i = j++, j = k++) {
			// PERFORMANCE_IDEA:  We can avoid redundant operations for adjacent edges.
			var n0 = Cartesian3.fromSpherical(directions[i], n0Scratch);
			var n1 = Cartesian3.fromSpherical(directions[j], n1Scratch);
			var n2 = Cartesian3.fromSpherical(directions[k], n2Scratch);

			// Extend position so the volume encompasses the sensor's radius.
			var theta = Math.max(Cartesian3.angleBetween(n0, n1), Cartesian3.angleBetween(n1, n2));
			var distance = r / Math.cos(theta * 0.5);
			var p = Cartesian3.multiplyByScalar(n1, distance, new Cartesian3());

			positions[(j * 3)] = p.x;
			positions[(j * 3) + 1] = p.y;
			positions[(j * 3) + 2] = p.z;

			boundingVolumePositions.push(p);
		}

		BoundingSphere.fromPoints(boundingVolumePositions, customSensorVolume._boundingSphere);

		return positions;
	}

	const nScratch = new Cartesian3();
	function createVertexArray(customSensorVolume, context) {
		var positions = computePositions(customSensorVolume);

		var length = customSensorVolume._directions.length;
		var vertices = new Float32Array(2 * 3 * 3 * length);

		var k = 0;
		for (var i = length - 1, j = 0; j < length; i = j++) {
			var p0 = new Cartesian3(positions[(i * 3)], positions[(i * 3) + 1], positions[(i * 3) + 2]);
			var p1 = new Cartesian3(positions[(j * 3)], positions[(j * 3) + 1], positions[(j * 3) + 2]);
			var n = Cartesian3.normalize(Cartesian3.cross(p1, p0, nScratch), nScratch); // Per-face normals

			vertices[k++] = 0.0; // Sensor vertex
			vertices[k++] = 0.0;
			vertices[k++] = 0.0;
			vertices[k++] = n.x;
			vertices[k++] = n.y;
			vertices[k++] = n.z;

			vertices[k++] = p1.x;
			vertices[k++] = p1.y;
			vertices[k++] = p1.z;
			vertices[k++] = n.x;
			vertices[k++] = n.y;
			vertices[k++] = n.z;

			vertices[k++] = p0.x;
			vertices[k++] = p0.y;
			vertices[k++] = p0.z;
			vertices[k++] = n.x;
			vertices[k++] = n.y;
			vertices[k++] = n.z;
		}

		var vertexBuffer = Buffer.createVertexBuffer({
			context: context,
			typedArray: new Float32Array(vertices),
			usage: BufferUsage.STATIC_DRAW
		});

		var stride = 2 * 3 * Float32Array.BYTES_PER_ELEMENT;

		var attributes = [{
			index: attributeLocations.position,
			vertexBuffer: vertexBuffer,
			componentsPerAttribute: 3,
			componentDatatype: ComponentDatatype.FLOAT,
			offsetInBytes: 0,
			strideInBytes: stride
		}, {
			index: attributeLocations.normal,
			vertexBuffer: vertexBuffer,
			componentsPerAttribute: 3,
			componentDatatype: ComponentDatatype.FLOAT,
			offsetInBytes: 3 * Float32Array.BYTES_PER_ELEMENT,
			strideInBytes: stride
		}];

		return new VertexArray({
			context: context,
			attributes: attributes
		});
	}

	/**
	 * Called when {@link Viewer} or {@link CesiumWidget} render the scene to
	 * get the draw commands needed to render this primitive.
	 * <p>
	 * Do not call this function directly.  This is documented just to
	 * list the exceptions that may be propagated when the scene is rendered:
	 * </p>
	 *
	 * @exception {DeveloperError} this.radius must be greater than or equal to zero.
	 * @exception {DeveloperError} this.lateralSurfaceMaterial must be defined.
	 */
	// eslint-disable-next-line complexity
	CustomSensorVolume.prototype.update = function(frameState) {
		this._mode = frameState.mode;
		if (!this.show || this._mode !== SceneMode.SCENE3D) {
			return;
		}

		var context = frameState.context;
		var commandList = frameState.commandList;

		// >>includeStart('debug', pragmas.debug);
		if (this.radius < 0.0) {
			throw new DeveloperError('this.radius must be greater than or equal to zero.');
		}
		if (!defined(this.lateralSurfaceMaterial)) {
			throw new DeveloperError('this.lateralSurfaceMaterial must be defined.');
		}
		// >>includeEnd('debug');

		var translucent = this.lateralSurfaceMaterial.isTranslucent();

		// Initial render state creation
		if ((this._showThroughEllipsoid !== this.showThroughEllipsoid) ||
			(!defined(this._frontFaceColorCommand.renderState)) ||
			(this._translucent !== translucent)
		) {
			this._showThroughEllipsoid = this.showThroughEllipsoid;
			this._translucent = translucent;

			var rs;

			if (translucent) {
				rs = RenderState.fromCache({
					depthTest: {
						// This would be better served by depth testing with a depth buffer that does not
						// include the ellipsoid depth - or a g-buffer containing an ellipsoid mask
						// so we can selectively depth test.
						enabled: !this.showThroughEllipsoid
					},
					depthMask: false,
					blending: BlendingState.ALPHA_BLEND,
					cull: {
						enabled: true,
						face: CullFace.BACK
					}
				});

				this._frontFaceColorCommand.renderState = rs;
				this._frontFaceColorCommand.pass = Pass.TRANSLUCENT;

				rs = RenderState.fromCache({
					depthTest: {
						enabled: !this.showThroughEllipsoid
					},
					depthMask: false,
					blending: BlendingState.ALPHA_BLEND,
					cull: {
						enabled: true,
						face: CullFace.FRONT
					}
				});

				this._backFaceColorCommand.renderState = rs;
				this._backFaceColorCommand.pass = Pass.TRANSLUCENT;

				rs = RenderState.fromCache({
					depthTest: {
						enabled: !this.showThroughEllipsoid
					},
					depthMask: false,
					blending: BlendingState.ALPHA_BLEND
				});
				this._pickCommand.renderState = rs;
			} else {
				rs = RenderState.fromCache({
					depthTest: {
						enabled: true
					},
					depthMask: true
				});
				this._frontFaceColorCommand.renderState = rs;
				this._frontFaceColorCommand.pass = Pass.OPAQUE;

				rs = RenderState.fromCache({
					depthTest: {
						enabled: true
					},
					depthMask: true
				});
				this._pickCommand.renderState = rs;
			}
		}

		// Recreate vertex buffer when directions change
		var directionsChanged = this._directionsDirty;
		if (directionsChanged) {
			this._directionsDirty = false;
			this._va = this._va && this._va.destroy();

			var directions = this._directions;
			if (directions && (directions.length >= 3)) {
				this._frontFaceColorCommand.vertexArray = createVertexArray(this, context);
				this._backFaceColorCommand.vertexArray = this._frontFaceColorCommand.vertexArray;
				this._pickCommand.vertexArray = this._frontFaceColorCommand.vertexArray;
			}
		}

		if (!defined(this._frontFaceColorCommand.vertexArray)) {
			return;
		}

		var pass = frameState.passes;

		var modelMatrixChanged = !Matrix4.equals(this.modelMatrix, this._modelMatrix);
		if (modelMatrixChanged) {
			Matrix4.clone(this.modelMatrix, this._modelMatrix);
		}

		if (directionsChanged || modelMatrixChanged) {
			BoundingSphere.transform(this._boundingSphere, this.modelMatrix, this._boundingSphereWC);
		}

		this._frontFaceColorCommand.modelMatrix = this.modelMatrix;
		this._backFaceColorCommand.modelMatrix = this._frontFaceColorCommand.modelMatrix;
		this._pickCommand.modelMatrix = this._frontFaceColorCommand.modelMatrix;

		var materialChanged = this._lateralSurfaceMaterial !== this.lateralSurfaceMaterial;
		this._lateralSurfaceMaterial = this.lateralSurfaceMaterial;
		this._lateralSurfaceMaterial.update(context);

		if (pass.render) {
			var frontFaceColorCommand = this._frontFaceColorCommand;
			var backFaceColorCommand = this._backFaceColorCommand;

			// Recompile shader when material changes
			if (materialChanged || !defined(frontFaceColorCommand.shaderProgram)) {
				var fsSource = new ShaderSource({
					sources: [SensorVolume, this._lateralSurfaceMaterial.shaderSource, CustomSensorVolumeFS]
				});

				frontFaceColorCommand.shaderProgram = ShaderProgram.replaceCache({
					context: context,
					shaderProgram: frontFaceColorCommand.shaderProgram,
					vertexShaderSource: CustomSensorVolumeVS,
					fragmentShaderSource: fsSource,
					attributeLocations: attributeLocations
				});

				frontFaceColorCommand.uniformMap = combine(this._uniforms, this._lateralSurfaceMaterial._uniforms);

				backFaceColorCommand.shaderProgram = frontFaceColorCommand.shaderProgram;
				backFaceColorCommand.uniformMap = combine(this._uniforms, this._lateralSurfaceMaterial._uniforms);
				// eslint-disable-next-line camelcase
				backFaceColorCommand.uniformMap.u_normalDirection = function() {
					return -1.0;
				};
			}

			if (translucent) {
				commandList.push(this._backFaceColorCommand, this._frontFaceColorCommand);
			} else {
				commandList.push(this._frontFaceColorCommand);
			}
		}

		if (pass.pick) {
			var pickCommand = this._pickCommand;

			if (!defined(this._pickId) || (this._id !== this.id)) {
				this._id = this.id;
				this._pickId = this._pickId && this._pickId.destroy();
				this._pickId = context.createPickId({
					primitive: this._pickPrimitive,
					id: this.id
				});
			}

			// Recompile shader when material changes
			if (materialChanged || !defined(pickCommand.shaderProgram)) {
				var pickFS = new ShaderSource({
					sources: [SensorVolume, this._lateralSurfaceMaterial.shaderSource, CustomSensorVolumeFS],
					pickColorQualifier: 'uniform'
				});

				pickCommand.shaderProgram = ShaderProgram.replaceCache({
					context: context,
					shaderProgram: pickCommand.shaderProgram,
					vertexShaderSource: CustomSensorVolumeVS,
					fragmentShaderSource: pickFS,
					attributeLocations: attributeLocations
				});

				var that = this;
				var uniforms = {
					// eslint-disable-next-line camelcase
					czm_pickColor: function() {
						return that._pickId.color;
					}
				};
				pickCommand.uniformMap = combine(combine(this._uniforms, this._lateralSurfaceMaterial._uniforms), uniforms);
			}

			pickCommand.pass = translucent ? Pass.TRANSLUCENT : Pass.OPAQUE;
			commandList.push(pickCommand);
		}
	};

	/**
	 * DOC_TBA
	 */
	CustomSensorVolume.prototype.isDestroyed = function() {
		return false;
	};

	/**
	 * DOC_TBA
	 */
	CustomSensorVolume.prototype.destroy = function() {
		this._frontFaceColorCommand.vertexArray = this._frontFaceColorCommand.vertexArray && this._frontFaceColorCommand.vertexArray.destroy();
		this._frontFaceColorCommand.shaderProgram = this._frontFaceColorCommand.shaderProgram && this._frontFaceColorCommand.shaderProgram.destroy();
		this._pickCommand.shaderProgram = this._pickCommand.shaderProgram && this._pickCommand.shaderProgram.destroy();
		this._pickId = this._pickId && this._pickId.destroy();
		return destroyObject(this);
	};

	function removePrimitive(entity, hash, primitives) {
		var data = hash[entity.id];
		if (defined(data)) {
			var primitive = data.primitive;
			primitives.remove(primitive);
			if (!primitive.isDestroyed()) {
				primitive.destroy();
			}
			delete hash[entity.id];
		}
	}

	const defaultIntersectionColor$2 = Color.WHITE;
	const defaultIntersectionWidth$2 = 1.0;
	const defaultRadius$2 = Number.POSITIVE_INFINITY;

	const matrix3Scratch$2 = new Matrix3();
	const cachedPosition$2 = new Cartesian3();
	const cachedOrientation$2 = new Quaternion();

	function assignSpherical$1(index, array, clock, cone) {
		var spherical = array[index];
		if (!defined(spherical)) {
			spherical = new Spherical();
			array[index] = spherical;
		}
		spherical.clock = clock;
		spherical.cone = cone;
		spherical.magnitude = 1.0;
	}

	// eslint-disable-next-line max-params
	function computeDirections(primitive, minimumClockAngle, maximumClockAngle, innerHalfAngle, outerHalfAngle) {
		var directions = primitive.directions;
		var angle;
		var i = 0;
		var angleStep = CesiumMath.toRadians(2.0);
		if (minimumClockAngle === 0.0 && maximumClockAngle === CesiumMath.TWO_PI) {
			// No clock angle limits, so this is just a circle.
			// There might be a hole but we're ignoring it for now.
			for (angle = 0.0; angle < CesiumMath.TWO_PI; angle += angleStep) {
				assignSpherical$1(i++, directions, angle, outerHalfAngle);
			}
		} else {
			// There are clock angle limits.
			for (angle = minimumClockAngle; angle < maximumClockAngle; angle += angleStep) {
				assignSpherical$1(i++, directions, angle, outerHalfAngle);
			}
			assignSpherical$1(i++, directions, maximumClockAngle, outerHalfAngle);
			if (innerHalfAngle) {
				for (angle = maximumClockAngle; angle > minimumClockAngle; angle -= angleStep) {
					assignSpherical$1(i++, directions, angle, innerHalfAngle);
				}
				assignSpherical$1(i++, directions, minimumClockAngle, innerHalfAngle);
			} else {
				assignSpherical$1(i++, directions, maximumClockAngle, 0.0);
			}
		}
		directions.length = i;
		primitive.directions = directions;
	}

	/**
	 * A {@link Visualizer} which maps {@link Entity#conicSensor} to a {@link ConicSensor}.
	 * @alias ConicSensorVisualizer
	 * @constructor
	 *
	 * @param {Scene} scene The scene the primitives will be rendered in.
	 * @param {EntityCollection} entityCollection The entityCollection to visualize.
	 */
	const ConicSensorVisualizer = function(scene, entityCollection) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(scene)) {
			throw new DeveloperError('scene is required.');
		}
		if (!defined(entityCollection)) {
			throw new DeveloperError('entityCollection is required.');
		}
		// >>includeEnd('debug');

		entityCollection.collectionChanged.addEventListener(ConicSensorVisualizer.prototype._onCollectionChanged, this);

		this._scene = scene;
		this._primitives = scene.primitives;
		this._entityCollection = entityCollection;
		this._hash = {};
		this._entitiesToVisualize = new AssociativeArray();

		this._onCollectionChanged(entityCollection, entityCollection.values, [], []);
	};

	/**
	 * Updates the primitives created by this visualizer to match their
	 * Entity counterpart at the given time.
	 *
	 * @param {JulianDate} time The time to update to.
	 * @returns {Boolean} This function always returns true.
	 */
	ConicSensorVisualizer.prototype.update = function(time) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(time)) {
			throw new DeveloperError('time is required.');
		}
		// >>includeEnd('debug');

		var entities = this._entitiesToVisualize.values;
		var hash = this._hash;
		var primitives = this._primitives;

		for (var i = 0, len = entities.length; i < len; i++) {
			var entity = entities[i];
			var conicSensorGraphics = entity._conicSensor;

			var position;
			var orientation;
			var data = hash[entity.id];
			var show = entity.isShowing && entity.isAvailable(time) && Property.getValueOrDefault(conicSensorGraphics._show, time, true);

			if (show) {
				position = Property.getValueOrUndefined(entity._position, time, cachedPosition$2);
				orientation = Property.getValueOrUndefined(entity._orientation, time, cachedOrientation$2);
				show = defined(position) && defined(orientation);
			}

			if (!show) {
				// don't bother creating or updating anything else
				if (defined(data)) {
					data.primitive.show = false;
				}
				continue;
			}

			var primitive = defined(data) ? data.primitive : undefined;
			if (!defined(primitive)) {
				primitive = new CustomSensorVolume();
				primitive.id = entity;
				primitives.add(primitive);

				data = {
					primitive: primitive,
					position: undefined,
					orientation: undefined,
					minimumClockAngle: undefined,
					maximumClockAngle: undefined,
					innerHalfAngle: undefined,
					outerHalfAngle: undefined
				};
				hash[entity.id] = data;
			}

			if (!Cartesian3.equals(position, data.position) || !Quaternion.equals(orientation, data.orientation)) {
				Matrix4.fromRotationTranslation(Matrix3.fromQuaternion(orientation, matrix3Scratch$2), position, primitive.modelMatrix);
				data.position = Cartesian3.clone(position, data.position);
				data.orientation = Quaternion.clone(orientation, data.orientation);
			}

			primitive.show = true;
			var minimumClockAngle = Property.getValueOrDefault(conicSensorGraphics._minimumClockAngle, time, 0);
			var maximumClockAngle = Property.getValueOrDefault(conicSensorGraphics._maximumClockAngle, time, CesiumMath.TWO_PI);
			var innerHalfAngle = Property.getValueOrDefault(conicSensorGraphics._innerHalfAngle, time, 0);
			var outerHalfAngle = Property.getValueOrDefault(conicSensorGraphics._outerHalfAngle, time, Math.PI);

			if (minimumClockAngle !== data.minimumClockAngle ||
				maximumClockAngle !== data.maximumClockAngle ||
				innerHalfAngle !== data.innerHalfAngle ||
				outerHalfAngle !== data.outerHalfAngle
			) {
				computeDirections(primitive, minimumClockAngle, maximumClockAngle, innerHalfAngle, outerHalfAngle);
				data.innerHalfAngle = innerHalfAngle;
				data.maximumClockAngle = maximumClockAngle;
				data.outerHalfAngle = outerHalfAngle;
				data.minimumClockAngle = minimumClockAngle;
			}

			primitive.radius = Property.getValueOrDefault(conicSensorGraphics._radius, time, defaultRadius$2);
			primitive.lateralSurfaceMaterial = MaterialProperty.getValue(time, conicSensorGraphics._lateralSurfaceMaterial, primitive.lateralSurfaceMaterial);
			primitive.intersectionColor = Property.getValueOrClonedDefault(conicSensorGraphics._intersectionColor, time, defaultIntersectionColor$2, primitive.intersectionColor);
			primitive.intersectionWidth = Property.getValueOrDefault(conicSensorGraphics._intersectionWidth, time, defaultIntersectionWidth$2);
		}
		return true;
	};

	/**
	 * Returns true if this object was destroyed; otherwise, false.
	 *
	 * @returns {Boolean} True if this object was destroyed; otherwise, false.
	 */
	ConicSensorVisualizer.prototype.isDestroyed = function() {
		return false;
	};

	/**
	 * Removes and destroys all primitives created by this instance.
	 */
	ConicSensorVisualizer.prototype.destroy = function() {
		var entities = this._entitiesToVisualize.values;
		var hash = this._hash;
		var primitives = this._primitives;
		for (var i = entities.length - 1; i > -1; i--) {
			removePrimitive(entities[i], hash, primitives);
		}
		return destroyObject(this);
	};

	/**
	 * @private
	 */
	ConicSensorVisualizer.prototype._onCollectionChanged = function(entityCollection, added, removed, changed) {
		var i;
		var entity;
		var entities = this._entitiesToVisualize;
		var hash = this._hash;
		var primitives = this._primitives;

		for (i = added.length - 1; i > -1; i--) {
			entity = added[i];
			if (defined(entity._conicSensor) && defined(entity._position) && defined(entity._orientation)) {
				entities.set(entity.id, entity);
			}
		}

		for (i = changed.length - 1; i > -1; i--) {
			entity = changed[i];
			if (defined(entity._conicSensor) && defined(entity._position) && defined(entity._orientation)) {
				entities.set(entity.id, entity);
			} else {
				removePrimitive(entity, hash, primitives);
				entities.remove(entity.id);
			}
		}

		for (i = removed.length - 1; i > -1; i--) {
			entity = removed[i];
			removePrimitive(entity, hash, primitives);
			entities.remove(entity.id);
		}
	};

	/**
	 * An optionally time-dynamic custom patterned sensor.
	 *
	 * @alias CustomPatternSensorGraphics
	 * @constructor
	 */
	const CustomPatternSensorGraphics = function(options) {
		this._directions = undefined;
		this._directionsSubscription = undefined;

		this._lateralSurfaceMaterial = undefined;
		this._lateralSurfaceMaterialSubscription = undefined;

		this._intersectionColor = undefined;
		this._intersectionColorSubscription = undefined;
		this._intersectionWidth = undefined;
		this._intersectionWidthSubscription = undefined;
		this._showIntersection = undefined;
		this._showIntersectionSubscription = undefined;
		this._radius = undefined;
		this._radiusSubscription = undefined;
		this._show = undefined;
		this._showSubscription = undefined;
		this._definitionChanged = new Event();

		this.merge(defaultValue(options, defaultValue.EMPTY_OBJECT));
	};

	Object.defineProperties(CustomPatternSensorGraphics.prototype, {
		/**
		 * Gets the event that is raised whenever a new property is assigned.
		 * @memberof CustomPatternSensorGraphics.prototype
		 *
		 * @type {Event}
		 * @readonly
		 */
		definitionChanged: {
			get: function() {
				return this._definitionChanged;
			}
		},

		/**
		 * A {@link Property} which returns an array of {@link Spherical} instances representing the sensor's projection.
		 * @memberof CustomPatternSensorGraphics.prototype
		 * @type {Property}
		 */
		directions: createPropertyDescriptor('directions'),

		/**
		 * Gets or sets the {@link MaterialProperty} specifying the the sensor's appearance.
		 * @memberof CustomPatternSensorGraphics.prototype
		 * @type {MaterialProperty}
		 */
		lateralSurfaceMaterial: createMaterialPropertyDescriptor('lateralSurfaceMaterial'),

		/**
		 * Gets or sets the {@link Color} {@link Property} specifying the color of the line formed by the intersection of the sensor and other central bodies.
		 * @memberof CustomPatternSensorGraphics.prototype
		 * @type {Property}
		 */
		intersectionColor: createPropertyDescriptor('intersectionColor'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the width of the line formed by the intersection of the sensor and other central bodies.
		 * @memberof CustomPatternSensorGraphics.prototype
		 * @type {Property}
		 */
		intersectionWidth: createPropertyDescriptor('intersectionWidth'),

		/**
		 * Gets or sets the boolean {@link Property} specifying the visibility of the line formed by the intersection of the sensor and other central bodies.
		 * @memberof CustomPatternSensorGraphics.prototype
		 * @type {Property}
		 */
		showIntersection: createPropertyDescriptor('showIntersection'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the radius of the sensor's projection.
		 * @memberof CustomPatternSensorGraphics.prototype
		 * @type {Property}
		 */
		radius: createPropertyDescriptor('radius'),

		/**
		 * Gets or sets the boolean {@link Property} specifying the visibility of the sensor.
		 * @memberof CustomPatternSensorGraphics.prototype
		 * @type {Property}
		 */
		show: createPropertyDescriptor('show')
	});

	/**
	 * Duplicates a CustomPatternSensorGraphics instance.
	 *
	 * @param {CustomPatternSensorGraphics} [result] The object onto which to store the result.
	 * @returns {CustomPatternSensorGraphics} The modified result parameter or a new instance if one was not provided.
	 */
	CustomPatternSensorGraphics.prototype.clone = function(result) {
		if (!defined(result)) {
			result = new CustomPatternSensorGraphics();
		}
		result.directions = this.directions;
		result.radius = this.radius;
		result.show = this.show;
		result.showIntersection = this.showIntersection;
		result.intersectionColor = this.intersectionColor;
		result.intersectionWidth = this.intersectionWidth;
		result.lateralSurfaceMaterial = this.lateralSurfaceMaterial;
		return result;
	};

	/**
	 * Assigns each unassigned property on this object to the value
	 * of the same property on the provided source object.
	 *
	 * @param {CustomPatternSensorGraphics} source The object to be merged into this object.
	 */
	CustomPatternSensorGraphics.prototype.merge = function(source) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(source)) {
			throw new DeveloperError('source is required.');
		}
		// >>includeEnd('debug');

		this.directions = defaultValue(this.directions, source.directions);
		this.radius = defaultValue(this.radius, source.radius);
		this.show = defaultValue(this.show, source.show);
		this.showIntersection = defaultValue(this.showIntersection, source.showIntersection);
		this.intersectionColor = defaultValue(this.intersectionColor, source.intersectionColor);
		this.intersectionWidth = defaultValue(this.intersectionWidth, source.intersectionWidth);
		this.lateralSurfaceMaterial = defaultValue(this.lateralSurfaceMaterial, source.lateralSurfaceMaterial);
	};

	const defaultIntersectionColor$1 = Color.WHITE;
	const defaultIntersectionWidth$1 = 1.0;
	const defaultRadius$1 = Number.POSITIVE_INFINITY;

	const matrix3Scratch$1 = new Matrix3();
	const cachedPosition$1 = new Cartesian3();
	const cachedOrientation$1 = new Quaternion();

	/**
	 * A {@link Visualizer} which maps {@link Entity#customPatternSensor} to a {@link CustomPatternSensor}.
	 * @alias CustomPatternSensorVisualizer
	 * @constructor
	 *
	 * @param {Scene} scene The scene the primitives will be rendered in.
	 * @param {EntityCollection} entityCollection The entityCollection to visualize.
	 */
	const CustomPatternSensorVisualizer = function(scene, entityCollection) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(scene)) {
			throw new DeveloperError('scene is required.');
		}
		if (!defined(entityCollection)) {
			throw new DeveloperError('entityCollection is required.');
		}
		// >>includeEnd('debug');

		entityCollection.collectionChanged.addEventListener(CustomPatternSensorVisualizer.prototype._onCollectionChanged, this);

		this._scene = scene;
		this._primitives = scene.primitives;
		this._entityCollection = entityCollection;
		this._hash = {};
		this._entitiesToVisualize = new AssociativeArray();

		this._onCollectionChanged(entityCollection, entityCollection.values, [], []);
	};

	/**
	 * Updates the primitives created by this visualizer to match their
	 * Entity counterpart at the given time.
	 *
	 * @param {JulianDate} time The time to update to.
	 * @returns {Boolean} This function always returns true.
	 */
	CustomPatternSensorVisualizer.prototype.update = function(time) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(time)) {
			throw new DeveloperError('time is required.');
		}
		// >>includeEnd('debug');

		var entities = this._entitiesToVisualize.values;
		var hash = this._hash;
		var primitives = this._primitives;

		for (var i = 0, len = entities.length; i < len; i++) {
			var entity = entities[i];
			var customPatternSensorGraphics = entity._customPatternSensor;

			var position;
			var orientation;
			var directions;
			var data = hash[entity.id];
			var show = entity.isShowing && entity.isAvailable(time) && Property.getValueOrDefault(customPatternSensorGraphics._show, time, true);

			if (show) {
				position = Property.getValueOrUndefined(entity._position, time, cachedPosition$1);
				orientation = Property.getValueOrUndefined(entity._orientation, time, cachedOrientation$1);
				directions = Property.getValueOrUndefined(customPatternSensorGraphics._directions, time);
				show = defined(position) && defined(orientation) && defined(directions);
			}

			if (!show) {
				// don't bother creating or updating anything else
				if (defined(data)) {
					data.primitive.show = false;
				}
				continue;
			}

			var primitive = defined(data) ? data.primitive : undefined;
			if (!defined(primitive)) {
				primitive = new CustomSensorVolume();
				primitive.id = entity;
				primitives.add(primitive);

				data = {
					primitive: primitive,
					position: undefined,
					orientation: undefined
				};
				hash[entity.id] = data;
			}

			if (!Cartesian3.equals(position, data.position) || !Quaternion.equals(orientation, data.orientation)) {
				Matrix4.fromRotationTranslation(Matrix3.fromQuaternion(orientation, matrix3Scratch$1), position, primitive.modelMatrix);
				data.position = Cartesian3.clone(position, data.position);
				data.orientation = Quaternion.clone(orientation, data.orientation);
			}

			primitive.show = true;
			primitive.directions = directions;
			primitive.radius = Property.getValueOrDefault(customPatternSensorGraphics._radius, time, defaultRadius$1);
			primitive.lateralSurfaceMaterial = MaterialProperty.getValue(time, customPatternSensorGraphics._lateralSurfaceMaterial, primitive.lateralSurfaceMaterial);
			primitive.intersectionColor = Property.getValueOrClonedDefault(customPatternSensorGraphics._intersectionColor, time, defaultIntersectionColor$1, primitive.intersectionColor);
			primitive.intersectionWidth = Property.getValueOrDefault(customPatternSensorGraphics._intersectionWidth, time, defaultIntersectionWidth$1);
		}
		return true;
	};

	/**
	 * Returns true if this object was destroyed; otherwise, false.
	 *
	 * @returns {Boolean} True if this object was destroyed; otherwise, false.
	 */
	CustomPatternSensorVisualizer.prototype.isDestroyed = function() {
		return false;
	};

	/**
	 * Removes and destroys all primitives created by this instance.
	 */
	CustomPatternSensorVisualizer.prototype.destroy = function() {
		var entities = this._entitiesToVisualize.values;
		var hash = this._hash;
		var primitives = this._primitives;
		for (var i = entities.length - 1; i > -1; i--) {
			removePrimitive(entities[i], hash, primitives);
		}
		return destroyObject(this);
	};

	/**
	 * @private
	 */
	CustomPatternSensorVisualizer.prototype._onCollectionChanged = function(entityCollection, added, removed, changed) {
		var i;
		var entity;
		var entities = this._entitiesToVisualize;
		var hash = this._hash;
		var primitives = this._primitives;

		for (i = added.length - 1; i > -1; i--) {
			entity = added[i];
			if (defined(entity._customPatternSensor) && defined(entity._position) && defined(entity._orientation)) {
				entities.set(entity.id, entity);
			}
		}

		for (i = changed.length - 1; i > -1; i--) {
			entity = changed[i];
			if (defined(entity._customPatternSensor) && defined(entity._position) && defined(entity._orientation)) {
				entities.set(entity.id, entity);
			} else {
				removePrimitive(entity, hash, primitives);
				entities.remove(entity.id);
			}
		}

		for (i = removed.length - 1; i > -1; i--) {
			entity = removed[i];
			removePrimitive(entity, hash, primitives);
			entities.remove(entity.id);
		}
	};

	/**
	 * An optionally time-dynamic pyramid.
	 *
	 * @alias RectangularSensorGraphics
	 * @constructor
	 */
	const RectangularSensorGraphics = function() {
		this._xHalfAngle = undefined;
		this._xHalfAngleSubscription = undefined;
		this._yHalfAngle = undefined;
		this._yHalfAngleSubscription = undefined;

		this._lateralSurfaceMaterial = undefined;
		this._lateralSurfaceMaterialSubscription = undefined;

		this._intersectionColor = undefined;
		this._intersectionColorSubscription = undefined;
		this._intersectionWidth = undefined;
		this._intersectionWidthSubscription = undefined;
		this._showIntersection = undefined;
		this._showIntersectionSubscription = undefined;
		this._radius = undefined;
		this._radiusSubscription = undefined;
		this._show = undefined;
		this._showSubscription = undefined;
		this._definitionChanged = new Event();
	};

	Object.defineProperties(RectangularSensorGraphics.prototype, {
		/**
		 * Gets the event that is raised whenever a new property is assigned.
		 * @memberof RectangularSensorGraphics.prototype
		 *
		 * @type {Event}
		 * @readonly
		 */
		definitionChanged: {
			get: function() {
				return this._definitionChanged;
			}
		},

		/**
		 * A {@link Property} which returns an array of {@link Spherical} instances representing the pyramid's projection.
		 * @memberof RectangularSensorGraphics.prototype
		 * @type {Property}
		 */
		xHalfAngle: createPropertyDescriptor('xHalfAngle'),

		/**
		 * A {@link Property} which returns an array of {@link Spherical} instances representing the pyramid's projection.
		 * @memberof RectangularSensorGraphics.prototype
		 * @type {Property}
		 */
		yHalfAngle: createPropertyDescriptor('yHalfAngle'),

		/**
		 * Gets or sets the {@link MaterialProperty} specifying the the pyramid's appearance.
		 * @memberof RectangularSensorGraphics.prototype
		 * @type {MaterialProperty}
		 */
		lateralSurfaceMaterial: createPropertyDescriptor('lateralSurfaceMaterial'),

		/**
		 * Gets or sets the {@link Color} {@link Property} specifying the color of the line formed by the intersection of the pyramid and other central bodies.
		 * @memberof RectangularSensorGraphics.prototype
		 * @type {Property}
		 */
		intersectionColor: createPropertyDescriptor('intersectionColor'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the width of the line formed by the intersection of the pyramid and other central bodies.
		 * @memberof RectangularSensorGraphics.prototype
		 * @type {Property}
		 */
		intersectionWidth: createPropertyDescriptor('intersectionWidth'),

		/**
		 * Gets or sets the boolean {@link Property} specifying the visibility of the line formed by the intersection of the pyramid and other central bodies.
		 * @memberof RectangularSensorGraphics.prototype
		 * @type {Property}
		 */
		showIntersection: createPropertyDescriptor('showIntersection'),

		/**
		 * Gets or sets the numeric {@link Property} specifying the radius of the pyramid's projection.
		 * @memberof RectangularSensorGraphics.prototype
		 * @type {Property}
		 */
		radius: createPropertyDescriptor('radius'),

		/**
		 * Gets or sets the boolean {@link Property} specifying the visibility of the pyramid.
		 * @memberof RectangularSensorGraphics.prototype
		 * @type {Property}
		 */
		show: createPropertyDescriptor('show')
	});

	/**
	 * Duplicates a RectangularSensorGraphics instance.
	 *
	 * @param {RectangularSensorGraphics} [result] The object onto which to store the result.
	 * @returns {RectangularSensorGraphics} The modified result parameter or a new instance if one was not provided.
	 */
	RectangularSensorGraphics.prototype.clone = function(result) {
		if (!defined(result)) {
			result = new RectangularSensorGraphics();
		}
		result.xHalfAngle = this.xHalfAngle;
		result.yHalfAngle = this.yHalfAngle;
		result.radius = this.radius;
		result.show = this.show;
		result.showIntersection = this.showIntersection;
		result.intersectionColor = this.intersectionColor;
		result.intersectionWidth = this.intersectionWidth;
		result.lateralSurfaceMaterial = this.lateralSurfaceMaterial;
		return result;
	};

	/**
	 * Assigns each unassigned property on this object to the value
	 * of the same property on the provided source object.
	 *
	 * @param {RectangularSensorGraphics} source The object to be merged into this object.
	 */
	RectangularSensorGraphics.prototype.merge = function(source) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(source)) {
			throw new DeveloperError('source is required.');
		}
		// >>includeEnd('debug');

		this.xHalfAngle = defaultValue(this.xHalfAngle, source.xHalfAngle);
		this.yHalfAngle = defaultValue(this.yHalfAngle, source.yHalfAngle);
		this.radius = defaultValue(this.radius, source.radius);
		this.show = defaultValue(this.show, source.show);
		this.showIntersection = defaultValue(this.showIntersection, source.showIntersection);
		this.intersectionColor = defaultValue(this.intersectionColor, source.intersectionColor);
		this.intersectionWidth = defaultValue(this.intersectionWidth, source.intersectionWidth);
		this.lateralSurfaceMaterial = defaultValue(this.lateralSurfaceMaterial, source.lateralSurfaceMaterial);
	};

	function assignSpherical(index, array, clock, cone) {
		var spherical = array[index];
		if (!defined(spherical)) {
			spherical = new Spherical();
			array[index] = spherical;
		}
		spherical.clock = clock;
		spherical.cone = cone;
		spherical.magnitude = 1.0;
	}

	function updateDirections(rectangularSensor) {
		var directions = rectangularSensor._customSensor.directions;

		// At 90 degrees the sensor is completely open, and tan() goes to infinity.
		var tanX = Math.tan(Math.min(rectangularSensor._xHalfAngle, CesiumMath.toRadians(89.0)));
		var tanY = Math.tan(Math.min(rectangularSensor._yHalfAngle, CesiumMath.toRadians(89.0)));
		var theta = Math.atan(tanX / tanY);
		var cone = Math.atan(Math.sqrt((tanX * tanX) + (tanY * tanY)));

		assignSpherical(0, directions, theta, cone);
		assignSpherical(1, directions, CesiumMath.toRadians(180.0) - theta, cone);
		assignSpherical(2, directions, CesiumMath.toRadians(180.0) + theta, cone);
		assignSpherical(3, directions, -theta, cone);

		directions.length = 4;
		rectangularSensor._customSensor.directions = directions;
	}

	const RectangularPyramidSensorVolume = function(options) {
		options = defaultValue(options, defaultValue.EMPTY_OBJECT);

		var customSensorOptions = clone(options);
		customSensorOptions._pickPrimitive = defaultValue(options._pickPrimitive, this);
		customSensorOptions.directions = undefined;
		this._customSensor = new CustomSensorVolume(customSensorOptions);

		this._xHalfAngle = defaultValue(options.xHalfAngle, CesiumMath.PI_OVER_TWO);
		this._yHalfAngle = defaultValue(options.yHalfAngle, CesiumMath.PI_OVER_TWO);

		updateDirections(this);
	};

	Object.defineProperties(RectangularPyramidSensorVolume.prototype, {
		xHalfAngle: {
			get: function() {
				return this._xHalfAngle;
			},
			set: function(value) {
				// >>includeStart('debug', pragmas.debug)
				if (value > CesiumMath.PI_OVER_TWO) {
					throw new DeveloperError('xHalfAngle must be less than or equal to 90 degrees.');
				}
				// >>includeEnd('debug');

				if (this._xHalfAngle !== value) {
					this._xHalfAngle = value;
					updateDirections(this);
				}
			}
		},
		yHalfAngle: {
			get: function() {
				return this._yHalfAngle;
			},
			set: function(value) {
				// >>includeStart('debug', pragmas.debug)
				if (value > CesiumMath.PI_OVER_TWO) {
					throw new DeveloperError('yHalfAngle must be less than or equal to 90 degrees.');
				}
				// >>includeEnd('debug');

				if (this._yHalfAngle !== value) {
					this._yHalfAngle = value;
					updateDirections(this);
				}
			}
		},
		show: {
			get: function() {
				return this._customSensor.show;
			},
			set: function(value) {
				this._customSensor.show = value;
			}
		},
		showIntersection: {
			get: function() {
				return this._customSensor.showIntersection;
			},
			set: function(value) {
				this._customSensor.showIntersection = value;
			}
		},
		showThroughEllipsoid: {
			get: function() {
				return this._customSensor.showThroughEllipsoid;
			},
			set: function(value) {
				this._customSensor.showThroughEllipsoid = value;
			}
		},
		modelMatrix: {
			get: function() {
				return this._customSensor.modelMatrix;
			},
			set: function(value) {
				this._customSensor.modelMatrix = value;
			}
		},
		radius: {
			get: function() {
				return this._customSensor.radius;
			},
			set: function(value) {
				this._customSensor.radius = value;
			}
		},
		lateralSurfaceMaterial: {
			get: function() {
				return this._customSensor.lateralSurfaceMaterial;
			},
			set: function(value) {
				this._customSensor.lateralSurfaceMaterial = value;
			}
		},
		intersectionColor: {
			get: function() {
				return this._customSensor.intersectionColor;
			},
			set: function(value) {
				this._customSensor.intersectionColor = value;
			}
		},
		intersectionWidth: {
			get: function() {
				return this._customSensor.intersectionWidth;
			},
			set: function(value) {
				this._customSensor.intersectionWidth = value;
			}
		},
		id: {
			get: function() {
				return this._customSensor.id;
			},
			set: function(value) {
				this._customSensor.id = value;
			}
		}
	});

	RectangularPyramidSensorVolume.prototype.update = function(frameState) {
		this._customSensor.update(frameState);
	};

	RectangularPyramidSensorVolume.prototype.isDestroyed = function() {
		return false;
	};

	RectangularPyramidSensorVolume.prototype.destroy = function() {
		this._customSensor = this._customSensor && this._customSensor.destroy();
		return destroyObject(this);
	};

	const defaultIntersectionColor = Color.WHITE;
	const defaultIntersectionWidth = 1.0;
	const defaultRadius = Number.POSITIVE_INFINITY;

	const matrix3Scratch = new Matrix3();
	const cachedPosition = new Cartesian3();
	const cachedOrientation = new Quaternion();

	/**
	 * A {@link Visualizer} which maps {@link Entity#rectangularSensor} to a {@link RectangularSensor}.
	 * @alias RectangularSensorVisualizer
	 * @constructor
	 *
	 * @param {Scene} scene The scene the primitives will be rendered in.
	 * @param {EntityCollection} entityCollection The entityCollection to visualize.
	 */
	const RectangularSensorVisualizer = function(scene, entityCollection) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(scene)) {
			throw new DeveloperError('scene is required.');
		}
		if (!defined(entityCollection)) {
			throw new DeveloperError('entityCollection is required.');
		}
		// >>includeEnd('debug');

		entityCollection.collectionChanged.addEventListener(RectangularSensorVisualizer.prototype._onCollectionChanged, this);

		this._scene = scene;
		this._primitives = scene.primitives;
		this._entityCollection = entityCollection;
		this._hash = {};
		this._entitiesToVisualize = new AssociativeArray();

		this._onCollectionChanged(entityCollection, entityCollection.values, [], []);
	};

	/**
	 * Updates the primitives created by this visualizer to match their
	 * Entity counterpart at the given time.
	 *
	 * @param {JulianDate} time The time to update to.
	 * @returns {Boolean} This function always returns true.
	 */
	RectangularSensorVisualizer.prototype.update = function(time) {
		// >>includeStart('debug', pragmas.debug);
		if (!defined(time)) {
			throw new DeveloperError('time is required.');
		}
		// >>includeEnd('debug');

		var entities = this._entitiesToVisualize.values;
		var hash = this._hash;
		var primitives = this._primitives;

		for (var i = 0, len = entities.length; i < len; i++) {
			var entity = entities[i];
			var rectangularSensorGraphics = entity._rectangularSensor;

			var position;
			var orientation;
			var data = hash[entity.id];
			var show = entity.isShowing && entity.isAvailable(time) && Property.getValueOrDefault(rectangularSensorGraphics._show, time, true);

			if (show) {
				position = Property.getValueOrUndefined(entity._position, time, cachedPosition);
				orientation = Property.getValueOrUndefined(entity._orientation, time, cachedOrientation);
				show = defined(position) && defined(orientation);
			}

			if (!show) {
				// don't bother creating or updating anything else
				if (defined(data)) {
					data.primitive.show = false;
				}
				continue;
			}

			var primitive = defined(data) ? data.primitive : undefined;
			if (!defined(primitive)) {
				primitive = new RectangularPyramidSensorVolume();
				primitive.id = entity;
				primitives.add(primitive);

				data = {
					primitive: primitive,
					position: undefined,
					orientation: undefined
				};
				hash[entity.id] = data;
			}

			if (!Cartesian3.equals(position, data.position) || !Quaternion.equals(orientation, data.orientation)) {
				Matrix4.fromRotationTranslation(Matrix3.fromQuaternion(orientation, matrix3Scratch), position, primitive.modelMatrix);
				data.position = Cartesian3.clone(position, data.position);
				data.orientation = Quaternion.clone(orientation, data.orientation);
			}

			primitive.show = true;
			primitive.xHalfAngle = Property.getValueOrDefault(rectangularSensorGraphics._xHalfAngle, time, CesiumMath.PI_OVER_TWO);
			primitive.yHalfAngle = Property.getValueOrDefault(rectangularSensorGraphics._yHalfAngle, time, CesiumMath.PI_OVER_TWO);
			primitive.radius = Property.getValueOrDefault(rectangularSensorGraphics._radius, time, defaultRadius);
			primitive.lateralSurfaceMaterial = MaterialProperty.getValue(time, rectangularSensorGraphics._lateralSurfaceMaterial, primitive.lateralSurfaceMaterial);
			primitive.intersectionColor = Property.getValueOrClonedDefault(rectangularSensorGraphics._intersectionColor, time, defaultIntersectionColor, primitive.intersectionColor);
			primitive.intersectionWidth = Property.getValueOrDefault(rectangularSensorGraphics._intersectionWidth, time, defaultIntersectionWidth);
		}
		return true;
	};

	/**
	 * Returns true if this object was destroyed; otherwise, false.
	 *
	 * @returns {Boolean} True if this object was destroyed; otherwise, false.
	 */
	RectangularSensorVisualizer.prototype.isDestroyed = function() {
		return false;
	};

	/**
	 * Removes and destroys all primitives created by this instance.
	 */
	RectangularSensorVisualizer.prototype.destroy = function() {
		var entities = this._entitiesToVisualize.values;
		var hash = this._hash;
		var primitives = this._primitives;
		for (var i = entities.length - 1; i > -1; i--) {
			removePrimitive(entities[i], hash, primitives);
		}
		return destroyObject(this);
	};

	/**
	 * @private
	 */
	RectangularSensorVisualizer.prototype._onCollectionChanged = function(entityCollection, added, removed, changed) {
		var i;
		var entity;
		var entities = this._entitiesToVisualize;
		var hash = this._hash;
		var primitives = this._primitives;

		for (i = added.length - 1; i > -1; i--) {
			entity = added[i];
			if (defined(entity._rectangularSensor) && defined(entity._position) && defined(entity._orientation)) {
				entities.set(entity.id, entity);
			}
		}

		for (i = changed.length - 1; i > -1; i--) {
			entity = changed[i];
			if (defined(entity._rectangularSensor) && defined(entity._position) && defined(entity._orientation)) {
				entities.set(entity.id, entity);
			} else {
				removePrimitive(entity, hash, primitives);
				entities.remove(entity.id);
			}
		}

		for (i = removed.length - 1; i > -1; i--) {
			entity = removed[i];
			removePrimitive(entity, hash, primitives);
			entities.remove(entity.id);
		}
	};

	var processPacketData = CzmlDataSource.processPacketData;
	var processMaterialPacketData = CzmlDataSource.processMaterialPacketData;

	// eslint-disable-next-line max-params
	function processDirectionData(customPatternSensor, directions, interval, sourceUri, entityCollection) {
		var i;
		var len;
		var values = [];
		var unitSphericals = directions.unitSpherical;
		var sphericals = directions.spherical;
		var unitCartesians = directions.unitCartesian;
		var cartesians = directions.cartesian;

		if (defined(unitSphericals)) {
			for (i = 0, len = unitSphericals.length; i < len; i += 2) {
				values.push(new Spherical(unitSphericals[i], unitSphericals[i + 1]));
			}
			directions.array = values;
		} else if (defined(sphericals)) {
			for (i = 0, len = sphericals.length; i < len; i += 3) {
				values.push(new Spherical(sphericals[i], sphericals[i + 1], sphericals[i + 2]));
			}
			directions.array = values;
		} else if (defined(unitCartesians)) {
			for (i = 0, len = unitCartesians.length; i < len; i += 3) {
				var tmp = Spherical.fromCartesian3(new Cartesian3(unitCartesians[i], unitCartesians[i + 1], unitCartesians[i + 2]));
				Spherical.normalize(tmp, tmp);
				values.push(tmp);
			}
			directions.array = values;
		} else if (defined(cartesians)) {
			for (i = 0, len = cartesians.length; i < len; i += 3) {
				values.push(Spherical.fromCartesian3(new Cartesian3(cartesians[i], cartesians[i + 1], cartesians[i + 2])));
			}
			directions.array = values;
		}
		processPacketData(Array, customPatternSensor, 'directions', directions, interval, sourceUri, entityCollection);
	}

	// eslint-disable-next-line max-params
	function processCommonSensorProperties(sensor, sensorData, interval, sourceUri, entityCollection) {
		processPacketData(Boolean, sensor, 'show', sensorData.show, interval, sourceUri, entityCollection);
		processPacketData(Number, sensor, 'radius', sensorData.radius, interval, sourceUri, entityCollection);
		processPacketData(Boolean, sensor, 'showIntersection', sensorData.showIntersection, interval, sourceUri, entityCollection);
		processPacketData(Color, sensor, 'intersectionColor', sensorData.intersectionColor, interval, sourceUri, entityCollection);
		processPacketData(Number, sensor, 'intersectionWidth', sensorData.intersectionWidth, interval, sourceUri, entityCollection);
		processMaterialPacketData(sensor, 'lateralSurfaceMaterial', sensorData.lateralSurfaceMaterial, interval, sourceUri, entityCollection);
	}

	var iso8601Scratch = {
		iso8601: undefined
	};

	function processConicSensor(entity, packet, entityCollection, sourceUri) {
		var conicSensorData = packet.agi_conicSensor;
		if (!defined(conicSensorData)) {
			return;
		}

		var interval;
		var intervalString = conicSensorData.interval;
		if (defined(intervalString)) {
			iso8601Scratch.iso8601 = intervalString;
			interval = TimeInterval.fromIso8601(iso8601Scratch);
		}

		var conicSensor = entity.conicSensor;
		if (!defined(conicSensor)) {
			entity.addProperty('conicSensor');
			conicSensor = new ConicSensorGraphics();
			entity.conicSensor = conicSensor;
		}

		processCommonSensorProperties(conicSensor, conicSensorData, interval, sourceUri, entityCollection);
		processPacketData(Number, conicSensor, 'innerHalfAngle', conicSensorData.innerHalfAngle, interval, sourceUri, entityCollection);
		processPacketData(Number, conicSensor, 'outerHalfAngle', conicSensorData.outerHalfAngle, interval, sourceUri, entityCollection);
		processPacketData(Number, conicSensor, 'minimumClockAngle', conicSensorData.minimumClockAngle, interval, sourceUri, entityCollection);
		processPacketData(Number, conicSensor, 'maximumClockAngle', conicSensorData.maximumClockAngle, interval, sourceUri, entityCollection);
	}

	function processCustomPatternSensor(entity, packet, entityCollection, sourceUri) {
		var customPatternSensorData = packet.agi_customPatternSensor;
		if (!defined(customPatternSensorData)) {
			return;
		}

		var interval;
		var intervalString = customPatternSensorData.interval;
		if (defined(intervalString)) {
			iso8601Scratch.iso8601 = intervalString;
			interval = TimeInterval.fromIso8601(iso8601Scratch);
		}

		var customPatternSensor = entity.customPatternSensor;
		if (!defined(customPatternSensor)) {
			entity.addProperty('customPatternSensor');
			customPatternSensor = new CustomPatternSensorGraphics();
			entity.customPatternSensor = customPatternSensor;
		}

		processCommonSensorProperties(customPatternSensor, customPatternSensorData, interval, sourceUri, entityCollection);

		// The directions property is a special case value that can be an array of unitSpherical or unit Cartesians.
		// We pre-process this into Spherical instances and then process it like any other array.
		var directions = customPatternSensorData.directions;
		if (defined(directions)) {
			if (Array.isArray(directions)) {
				var length = directions.length;
				for (var i = 0; i < length; i++) {
					processDirectionData(customPatternSensor, directions[i], interval, sourceUri, entityCollection);
				}
			} else {
				processDirectionData(customPatternSensor, directions, interval, sourceUri, entityCollection);
			}
		}
	}

	function processRectangularSensor(entity, packet, entityCollection, sourceUri) {
		var rectangularSensorData = packet.agi_rectangularSensor;
		if (!defined(rectangularSensorData)) {
			return;
		}

		var interval;
		var intervalString = rectangularSensorData.interval;
		if (defined(intervalString)) {
			iso8601Scratch.iso8601 = intervalString;
			interval = TimeInterval.fromIso8601(iso8601Scratch);
		}

		var rectangularSensor = entity.rectangularSensor;
		if (!defined(rectangularSensor)) {
			entity.addProperty('rectangularSensor');
			rectangularSensor = new RectangularSensorGraphics();
			entity.rectangularSensor = rectangularSensor;
		}

		processCommonSensorProperties(rectangularSensor, rectangularSensorData, interval, sourceUri, entityCollection);
		processPacketData(Number, rectangularSensor, 'xHalfAngle', rectangularSensorData.xHalfAngle, interval, sourceUri, entityCollection);
		processPacketData(Number, rectangularSensor, 'yHalfAngle', rectangularSensorData.yHalfAngle, interval, sourceUri, entityCollection);
	}

	var initialized = false;

	function initialize() {
		if (initialized) {
			return;
		}

		CzmlDataSource.updaters.push(processConicSensor, processCustomPatternSensor, processRectangularSensor);

		var originalDefaultVisualizersCallback = DataSourceDisplay.defaultVisualizersCallback;
		DataSourceDisplay.defaultVisualizersCallback = function(scene, entityCluster, dataSource) {
			var entities = dataSource.entities;
			var array = originalDefaultVisualizersCallback(scene, entityCluster, dataSource);
			return array.concat([
				new ConicSensorVisualizer(scene, entities),
				new CustomPatternSensorVisualizer(scene, entities),
				new RectangularSensorVisualizer(scene, entities)
			]);
		};

		initialized = true;
	}

	initialize();

	var cesiumSensorVolumes = {
		ConicSensorGraphics,
		ConicSensorVisualizer,
		CustomPatternSensorGraphics,
		CustomPatternSensorVisualizer,
		CustomSensorVolume,
		RectangularPyramidSensorVolume,
		RectangularSensorGraphics,
		RectangularSensorVisualizer
	};

	return cesiumSensorVolumes;

}));