ts/public/GV/thirdParty/Threejs-109/examples/js/loaders/SVGLoader.js
2024-12-09 14:44:52 +08:00

1969 lines
46 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @author mrdoob / http://mrdoob.com/
* @author zz85 / http://joshuakoo.com/
* @author yomboprime / https://yombo.org
*/
THREE.SVGLoader = function ( manager ) {
THREE.Loader.call( this, manager );
};
THREE.SVGLoader.prototype = Object.assign( Object.create( THREE.Loader.prototype ), {
constructor: THREE.SVGLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new THREE.FileLoader( scope.manager );
loader.setPath( scope.path );
loader.load( url, function ( text ) {
onLoad( scope.parse( text ) );
}, onProgress, onError );
},
parse: function ( text ) {
function parseNode( node, style ) {
if ( node.nodeType !== 1 ) return;
var transform = getNodeTransform( node );
var path = null;
switch ( node.nodeName ) {
case 'svg':
break;
case 'g':
style = parseStyle( node, style );
break;
case 'path':
style = parseStyle( node, style );
if ( node.hasAttribute( 'd' ) ) path = parsePathNode( node );
break;
case 'rect':
style = parseStyle( node, style );
path = parseRectNode( node );
break;
case 'polygon':
style = parseStyle( node, style );
path = parsePolygonNode( node );
break;
case 'polyline':
style = parseStyle( node, style );
path = parsePolylineNode( node );
break;
case 'circle':
style = parseStyle( node, style );
path = parseCircleNode( node );
break;
case 'ellipse':
style = parseStyle( node, style );
path = parseEllipseNode( node );
break;
case 'line':
style = parseStyle( node, style );
path = parseLineNode( node );
break;
default:
console.log( node );
}
if ( path ) {
if ( style.fill !== undefined && style.fill !== 'none' ) {
path.color.setStyle( style.fill );
}
transformPath( path, currentTransform );
paths.push( path );
path.userData = { node: node, style: style };
}
var nodes = node.childNodes;
for ( var i = 0; i < nodes.length; i ++ ) {
parseNode( nodes[ i ], style );
}
if ( transform ) {
transformStack.pop();
if ( transformStack.length > 0 ) {
currentTransform.copy( transformStack[ transformStack.length - 1 ] );
} else {
currentTransform.identity();
}
}
}
function parsePathNode( node ) {
var path = new THREE.ShapePath();
var point = new THREE.Vector2();
var control = new THREE.Vector2();
var firstPoint = new THREE.Vector2();
var isFirstPoint = true;
var doSetFirstPoint = false;
var d = node.getAttribute( 'd' );
// console.log( d );
var commands = d.match( /[a-df-z][^a-df-z]*/ig );
for ( var i = 0, l = commands.length; i < l; i ++ ) {
var command = commands[ i ];
var type = command.charAt( 0 );
var data = command.substr( 1 ).trim();
if ( isFirstPoint === true ) {
doSetFirstPoint = true;
isFirstPoint = false;
}
switch ( type ) {
case 'M':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
if ( j === 0 ) {
path.moveTo( point.x, point.y );
} else {
path.lineTo( point.x, point.y );
}
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'H':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j ++ ) {
point.x = numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'V':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j ++ ) {
point.y = numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'L':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'C':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 6 ) {
path.bezierCurveTo(
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ],
numbers[ j + 4 ],
numbers[ j + 5 ]
);
control.x = numbers[ j + 2 ];
control.y = numbers[ j + 3 ];
point.x = numbers[ j + 4 ];
point.y = numbers[ j + 5 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'S':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.bezierCurveTo(
getReflection( point.x, control.x ),
getReflection( point.y, control.y ),
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ]
);
control.x = numbers[ j + 0 ];
control.y = numbers[ j + 1 ];
point.x = numbers[ j + 2 ];
point.y = numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'Q':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.quadraticCurveTo(
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ]
);
control.x = numbers[ j + 0 ];
control.y = numbers[ j + 1 ];
point.x = numbers[ j + 2 ];
point.y = numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'T':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
var rx = getReflection( point.x, control.x );
var ry = getReflection( point.y, control.y );
path.quadraticCurveTo(
rx,
ry,
numbers[ j + 0 ],
numbers[ j + 1 ]
);
control.x = rx;
control.y = ry;
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'A':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 7 ) {
var start = point.clone();
point.x = numbers[ j + 5 ];
point.y = numbers[ j + 6 ];
control.x = point.x;
control.y = point.y;
parseArcCommand(
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
);
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'm':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x += numbers[ j + 0 ];
point.y += numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
if ( j === 0 ) {
path.moveTo( point.x, point.y );
} else {
path.lineTo( point.x, point.y );
}
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'h':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j ++ ) {
point.x += numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'v':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j ++ ) {
point.y += numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'l':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x += numbers[ j + 0 ];
point.y += numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'c':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 6 ) {
path.bezierCurveTo(
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ],
point.x + numbers[ j + 4 ],
point.y + numbers[ j + 5 ]
);
control.x = point.x + numbers[ j + 2 ];
control.y = point.y + numbers[ j + 3 ];
point.x += numbers[ j + 4 ];
point.y += numbers[ j + 5 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 's':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.bezierCurveTo(
getReflection( point.x, control.x ),
getReflection( point.y, control.y ),
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ]
);
control.x = point.x + numbers[ j + 0 ];
control.y = point.y + numbers[ j + 1 ];
point.x += numbers[ j + 2 ];
point.y += numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'q':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.quadraticCurveTo(
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ]
);
control.x = point.x + numbers[ j + 0 ];
control.y = point.y + numbers[ j + 1 ];
point.x += numbers[ j + 2 ];
point.y += numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 't':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
var rx = getReflection( point.x, control.x );
var ry = getReflection( point.y, control.y );
path.quadraticCurveTo(
rx,
ry,
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ]
);
control.x = rx;
control.y = ry;
point.x = point.x + numbers[ j + 0 ];
point.y = point.y + numbers[ j + 1 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'a':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 7 ) {
var start = point.clone();
point.x += numbers[ j + 5 ];
point.y += numbers[ j + 6 ];
control.x = point.x;
control.y = point.y;
parseArcCommand(
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
);
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'Z':
case 'z':
path.currentPath.autoClose = true;
if ( path.currentPath.curves.length > 0 ) {
// Reset point to beginning of Path
point.copy( firstPoint );
path.currentPath.currentPoint.copy( point );
isFirstPoint = true;
}
break;
default:
console.warn( command );
}
// console.log( type, parseFloats( data ), parseFloats( data ).length )
doSetFirstPoint = false;
}
return path;
}
/**
* https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
* https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion
* From
* rx ry x-axis-rotation large-arc-flag sweep-flag x y
* To
* aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation
*/
function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) {
x_axis_rotation = x_axis_rotation * Math.PI / 180;
// Ensure radii are positive
rx = Math.abs( rx );
ry = Math.abs( ry );
// Compute (x1, y1)
var dx2 = ( start.x - end.x ) / 2.0;
var dy2 = ( start.y - end.y ) / 2.0;
var x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2;
var y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2;
// Compute (cx, cy)
var rxs = rx * rx;
var rys = ry * ry;
var x1ps = x1p * x1p;
var y1ps = y1p * y1p;
// Ensure radii are large enough
var cr = x1ps / rxs + y1ps / rys;
if ( cr > 1 ) {
// scale up rx,ry equally so cr == 1
var s = Math.sqrt( cr );
rx = s * rx;
ry = s * ry;
rxs = rx * rx;
rys = ry * ry;
}
var dq = ( rxs * y1ps + rys * x1ps );
var pq = ( rxs * rys - dq ) / dq;
var q = Math.sqrt( Math.max( 0, pq ) );
if ( large_arc_flag === sweep_flag ) q = - q;
var cxp = q * rx * y1p / ry;
var cyp = - q * ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx, cy)
var cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2;
var cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2;
// Step 4: Compute θ1 and Δθ
var theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry );
var delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 );
path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation );
}
function svgAngle( ux, uy, vx, vy ) {
var dot = ux * vx + uy * vy;
var len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy );
var ang = Math.acos( Math.max( - 1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear
if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang;
return ang;
}
/*
* According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute
* rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough
*/
function parseRectNode( node ) {
var x = parseFloat( node.getAttribute( 'x' ) || 0 );
var y = parseFloat( node.getAttribute( 'y' ) || 0 );
var rx = parseFloat( node.getAttribute( 'rx' ) || 0 );
var ry = parseFloat( node.getAttribute( 'ry' ) || 0 );
var w = parseFloat( node.getAttribute( 'width' ) );
var h = parseFloat( node.getAttribute( 'height' ) );
var path = new THREE.ShapePath();
path.moveTo( x + 2 * rx, y );
path.lineTo( x + w - 2 * rx, y );
if ( rx !== 0 || ry !== 0 ) path.bezierCurveTo( x + w, y, x + w, y, x + w, y + 2 * ry );
path.lineTo( x + w, y + h - 2 * ry );
if ( rx !== 0 || ry !== 0 ) path.bezierCurveTo( x + w, y + h, x + w, y + h, x + w - 2 * rx, y + h );
path.lineTo( x + 2 * rx, y + h );
if ( rx !== 0 || ry !== 0 ) {
path.bezierCurveTo( x, y + h, x, y + h, x, y + h - 2 * ry );
}
path.lineTo( x, y + 2 * ry );
if ( rx !== 0 || ry !== 0 ) {
path.bezierCurveTo( x, y, x, y, x + 2 * rx, y );
}
return path;
}
function parsePolygonNode( node ) {
function iterator( match, a, b ) {
var x = parseFloat( a );
var y = parseFloat( b );
if ( index === 0 ) {
path.moveTo( x, y );
} else {
path.lineTo( x, y );
}
index ++;
}
var regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g;
var path = new THREE.ShapePath();
var index = 0;
node.getAttribute( 'points' ).replace( regex, iterator );
path.currentPath.autoClose = true;
return path;
}
function parsePolylineNode( node ) {
function iterator( match, a, b ) {
var x = parseFloat( a );
var y = parseFloat( b );
if ( index === 0 ) {
path.moveTo( x, y );
} else {
path.lineTo( x, y );
}
index ++;
}
var regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g;
var path = new THREE.ShapePath();
var index = 0;
node.getAttribute( 'points' ).replace( regex, iterator );
path.currentPath.autoClose = false;
return path;
}
function parseCircleNode( node ) {
var x = parseFloat( node.getAttribute( 'cx' ) );
var y = parseFloat( node.getAttribute( 'cy' ) );
var r = parseFloat( node.getAttribute( 'r' ) );
var subpath = new THREE.Path();
subpath.absarc( x, y, r, 0, Math.PI * 2 );
var path = new THREE.ShapePath();
path.subPaths.push( subpath );
return path;
}
function parseEllipseNode( node ) {
var x = parseFloat( node.getAttribute( 'cx' ) );
var y = parseFloat( node.getAttribute( 'cy' ) );
var rx = parseFloat( node.getAttribute( 'rx' ) );
var ry = parseFloat( node.getAttribute( 'ry' ) );
var subpath = new THREE.Path();
subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 );
var path = new THREE.ShapePath();
path.subPaths.push( subpath );
return path;
}
function parseLineNode( node ) {
var x1 = parseFloat( node.getAttribute( 'x1' ) );
var y1 = parseFloat( node.getAttribute( 'y1' ) );
var x2 = parseFloat( node.getAttribute( 'x2' ) );
var y2 = parseFloat( node.getAttribute( 'y2' ) );
var path = new THREE.ShapePath();
path.moveTo( x1, y1 );
path.lineTo( x2, y2 );
path.currentPath.autoClose = false;
return path;
}
//
function parseStyle( node, style ) {
style = Object.assign( {}, style ); // clone style
function addStyle( svgName, jsName, adjustFunction ) {
if ( adjustFunction === undefined ) adjustFunction = function copy( v ) {
return v;
};
if ( node.hasAttribute( svgName ) ) style[ jsName ] = adjustFunction( node.getAttribute( svgName ) );
if ( node.style[ svgName ] !== '' ) style[ jsName ] = adjustFunction( node.style[ svgName ] );
}
function clamp( v ) {
return Math.max( 0, Math.min( 1, v ) );
}
function positive( v ) {
return Math.max( 0, v );
}
addStyle( 'fill', 'fill' );
addStyle( 'fill-opacity', 'fillOpacity', clamp );
addStyle( 'stroke', 'stroke' );
addStyle( 'stroke-opacity', 'strokeOpacity', clamp );
addStyle( 'stroke-width', 'strokeWidth', positive );
addStyle( 'stroke-linejoin', 'strokeLineJoin' );
addStyle( 'stroke-linecap', 'strokeLineCap' );
addStyle( 'stroke-miterlimit', 'strokeMiterLimit', positive );
return style;
}
// http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
function getReflection( a, b ) {
return a - ( b - a );
}
function parseFloats( string ) {
var array = string.split( /[\s,]+|(?=\s?[+\-])/ );
for ( var i = 0; i < array.length; i ++ ) {
var number = array[ i ];
// Handle values like 48.6037.7.8
// TODO Find a regex for this
if ( number.indexOf( '.' ) !== number.lastIndexOf( '.' ) ) {
var split = number.split( '.' );
for ( var s = 2; s < split.length; s ++ ) {
array.splice( i + s - 1, 0, '0.' + split[ s ] );
}
}
array[ i ] = parseFloat( number );
}
return array;
}
function getNodeTransform( node ) {
if ( ! node.hasAttribute( 'transform' ) ) {
return null;
}
var transform = parseNodeTransform( node );
if ( transformStack.length > 0 ) {
transform.premultiply( transformStack[ transformStack.length - 1 ] );
}
currentTransform.copy( transform );
transformStack.push( transform );
return transform;
}
function parseNodeTransform( node ) {
var transform = new THREE.Matrix3();
var currentTransform = tempTransform0;
var transformsTexts = node.getAttribute( 'transform' ).split( ')' );
for ( var tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex -- ) {
var transformText = transformsTexts[ tIndex ].trim();
if ( transformText === '' ) continue;
var openParPos = transformText.indexOf( '(' );
var closeParPos = transformText.length;
if ( openParPos > 0 && openParPos < closeParPos ) {
var transformType = transformText.substr( 0, openParPos );
var array = parseFloats( transformText.substr( openParPos + 1, closeParPos - openParPos - 1 ) );
currentTransform.identity();
switch ( transformType ) {
case "translate":
if ( array.length >= 1 ) {
var tx = array[ 0 ];
var ty = tx;
if ( array.length >= 2 ) {
ty = array[ 1 ];
}
currentTransform.translate( tx, ty );
}
break;
case "rotate":
if ( array.length >= 1 ) {
var angle = 0;
var cx = 0;
var cy = 0;
// Angle
angle = - array[ 0 ] * Math.PI / 180;
if ( array.length >= 3 ) {
// Center x, y
cx = array[ 1 ];
cy = array[ 2 ];
}
// Rotate around center (cx, cy)
tempTransform1.identity().translate( - cx, - cy );
tempTransform2.identity().rotate( angle );
tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 );
tempTransform1.identity().translate( cx, cy );
currentTransform.multiplyMatrices( tempTransform1, tempTransform3 );
}
break;
case "scale":
if ( array.length >= 1 ) {
var scaleX = array[ 0 ];
var scaleY = scaleX;
if ( array.length >= 2 ) {
scaleY = array[ 1 ];
}
currentTransform.scale( scaleX, scaleY );
}
break;
case "skewX":
if ( array.length === 1 ) {
currentTransform.set(
1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0,
0, 1, 0,
0, 0, 1
);
}
break;
case "skewY":
if ( array.length === 1 ) {
currentTransform.set(
1, 0, 0,
Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0,
0, 0, 1
);
}
break;
case "matrix":
if ( array.length === 6 ) {
currentTransform.set(
array[ 0 ], array[ 2 ], array[ 4 ],
array[ 1 ], array[ 3 ], array[ 5 ],
0, 0, 1
);
}
break;
}
}
transform.premultiply( currentTransform );
}
return transform;
}
function transformPath( path, m ) {
function transfVec2( v2 ) {
tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m );
v2.set( tempV3.x, tempV3.y );
}
var isRotated = isTransformRotated( m );
var subPaths = path.subPaths;
for ( var i = 0, n = subPaths.length; i < n; i ++ ) {
var subPath = subPaths[ i ];
var curves = subPath.curves;
for ( var j = 0; j < curves.length; j ++ ) {
var curve = curves[ j ];
if ( curve.isLineCurve ) {
transfVec2( curve.v1 );
transfVec2( curve.v2 );
} else if ( curve.isCubicBezierCurve ) {
transfVec2( curve.v0 );
transfVec2( curve.v1 );
transfVec2( curve.v2 );
transfVec2( curve.v3 );
} else if ( curve.isQuadraticBezierCurve ) {
transfVec2( curve.v0 );
transfVec2( curve.v1 );
transfVec2( curve.v2 );
} else if ( curve.isEllipseCurve ) {
if ( isRotated ) {
console.warn( "SVGLoader: Elliptic arc or ellipse rotation or skewing is not implemented." );
}
tempV2.set( curve.aX, curve.aY );
transfVec2( tempV2 );
curve.aX = tempV2.x;
curve.aY = tempV2.y;
curve.xRadius *= getTransformScaleX( m );
curve.yRadius *= getTransformScaleY( m );
}
}
}
}
function isTransformRotated( m ) {
return m.elements[ 1 ] !== 0 || m.elements[ 3 ] !== 0;
}
function getTransformScaleX( m ) {
var te = m.elements;
return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] );
}
function getTransformScaleY( m ) {
var te = m.elements;
return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] );
}
//
console.log( 'THREE.SVGLoader' );
var paths = [];
var transformStack = [];
var tempTransform0 = new THREE.Matrix3();
var tempTransform1 = new THREE.Matrix3();
var tempTransform2 = new THREE.Matrix3();
var tempTransform3 = new THREE.Matrix3();
var tempV2 = new THREE.Vector2();
var tempV3 = new THREE.Vector3();
var currentTransform = new THREE.Matrix3();
console.time( 'THREE.SVGLoader: DOMParser' );
var xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml
console.timeEnd( 'THREE.SVGLoader: DOMParser' );
console.time( 'THREE.SVGLoader: Parse' );
parseNode( xml.documentElement, {
fill: '#000',
fillOpacity: 1,
strokeOpacity: 1,
strokeWidth: 1,
strokeLineJoin: 'miter',
strokeLineCap: 'butt',
strokeMiterLimit: 4
} );
var data = { paths: paths, xml: xml.documentElement };
// console.log( paths );
console.timeEnd( 'THREE.SVGLoader: Parse' );
return data;
}
} );
THREE.SVGLoader.getStrokeStyle = function ( width, color, lineJoin, lineCap, miterLimit ) {
// Param width: Stroke width
// Param color: As returned by THREE.Color.getStyle()
// Param lineJoin: One of "round", "bevel", "miter" or "miter-limit"
// Param lineCap: One of "round", "square" or "butt"
// Param miterLimit: Maximum join length, in multiples of the "width" parameter (join is truncated if it exceeds that distance)
// Returns style object
width = width !== undefined ? width : 1;
color = color !== undefined ? color : '#000';
lineJoin = lineJoin !== undefined ? lineJoin : 'miter';
lineCap = lineCap !== undefined ? lineCap : 'butt';
miterLimit = miterLimit !== undefined ? miterLimit : 4;
return {
strokeColor: color,
strokeWidth: width,
strokeLineJoin: lineJoin,
strokeLineCap: lineCap,
strokeMiterLimit: miterLimit
};
};
THREE.SVGLoader.pointsToStroke = function ( points, style, arcDivisions, minDistance ) {
// Generates a stroke with some witdh around the given path.
// The path can be open or closed (last point equals to first point)
// Param points: Array of Vector2D (the path). Minimum 2 points.
// Param style: Object with SVG properties as returned by SVGLoader.getStrokeStyle(), or SVGLoader.parse() in the path.userData.style object
// Params arcDivisions: Arc divisions for round joins and endcaps. (Optional)
// Param minDistance: Points closer to this distance will be merged. (Optional)
// Returns BufferGeometry with stroke triangles (In plane z = 0). UV coordinates are generated ('u' along path. 'v' across it, from left to right)
var vertices = [];
var normals = [];
var uvs = [];
if ( THREE.SVGLoader.pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs ) === 0 ) {
return null;
}
var geometry = new THREE.BufferGeometry();
geometry.addAttribute( 'position', new THREE.Float32BufferAttribute( vertices, 3 ) );
geometry.addAttribute( 'normal', new THREE.Float32BufferAttribute( normals, 3 ) );
geometry.addAttribute( 'uv', new THREE.Float32BufferAttribute( uvs, 2 ) );
return geometry;
};
THREE.SVGLoader.pointsToStrokeWithBuffers = function () {
var tempV2_1 = new THREE.Vector2();
var tempV2_2 = new THREE.Vector2();
var tempV2_3 = new THREE.Vector2();
var tempV2_4 = new THREE.Vector2();
var tempV2_5 = new THREE.Vector2();
var tempV2_6 = new THREE.Vector2();
var tempV2_7 = new THREE.Vector2();
var lastPointL = new THREE.Vector2();
var lastPointR = new THREE.Vector2();
var point0L = new THREE.Vector2();
var point0R = new THREE.Vector2();
var currentPointL = new THREE.Vector2();
var currentPointR = new THREE.Vector2();
var nextPointL = new THREE.Vector2();
var nextPointR = new THREE.Vector2();
var innerPoint = new THREE.Vector2();
var outerPoint = new THREE.Vector2();
return function ( points, style, arcDivisions, minDistance, vertices, normals, uvs, vertexOffset ) {
// This function can be called to update existing arrays or buffers.
// Accepts same parameters as pointsToStroke, plus the buffers and optional offset.
// Param vertexOffset: Offset vertices to start writing in the buffers (3 elements/vertex for vertices and normals, and 2 elements/vertex for uvs)
// Returns number of written vertices / normals / uvs pairs
// if 'vertices' parameter is undefined no triangles will be generated, but the returned vertices count will still be valid (useful to preallocate the buffers)
// 'normals' and 'uvs' buffers are optional
arcDivisions = arcDivisions !== undefined ? arcDivisions : 12;
minDistance = minDistance !== undefined ? minDistance : 0.001;
vertexOffset = vertexOffset !== undefined ? vertexOffset : 0;
// First ensure there are no duplicated points
points = removeDuplicatedPoints( points );
var numPoints = points.length;
if ( numPoints < 2 ) return 0;
var isClosed = points[ 0 ].equals( points[ numPoints - 1 ] );
var currentPoint;
var previousPoint = points[ 0 ];
var nextPoint;
var strokeWidth2 = style.strokeWidth / 2;
var deltaU = 1 / ( numPoints - 1 );
var u0 = 0;
var innerSideModified;
var joinIsOnLeftSide;
var isMiter;
var initialJoinIsOnLeftSide = false;
var numVertices = 0;
var currentCoordinate = vertexOffset * 3;
var currentCoordinateUV = vertexOffset * 2;
// Get initial left and right stroke points
getNormal( points[ 0 ], points[ 1 ], tempV2_1 ).multiplyScalar( strokeWidth2 );
lastPointL.copy( points[ 0 ] ).sub( tempV2_1 );
lastPointR.copy( points[ 0 ] ).add( tempV2_1 );
point0L.copy( lastPointL );
point0R.copy( lastPointR );
for ( var iPoint = 1; iPoint < numPoints; iPoint ++ ) {
currentPoint = points[ iPoint ];
// Get next point
if ( iPoint === numPoints - 1 ) {
if ( isClosed ) {
// Skip duplicated initial point
nextPoint = points[ 1 ];
} else nextPoint = undefined;
} else {
nextPoint = points[ iPoint + 1 ];
}
// Normal of previous segment in tempV2_1
var normal1 = tempV2_1;
getNormal( previousPoint, currentPoint, normal1 );
tempV2_3.copy( normal1 ).multiplyScalar( strokeWidth2 );
currentPointL.copy( currentPoint ).sub( tempV2_3 );
currentPointR.copy( currentPoint ).add( tempV2_3 );
var u1 = u0 + deltaU;
innerSideModified = false;
if ( nextPoint !== undefined ) {
// Normal of next segment in tempV2_2
getNormal( currentPoint, nextPoint, tempV2_2 );
tempV2_3.copy( tempV2_2 ).multiplyScalar( strokeWidth2 );
nextPointL.copy( currentPoint ).sub( tempV2_3 );
nextPointR.copy( currentPoint ).add( tempV2_3 );
joinIsOnLeftSide = true;
tempV2_3.subVectors( nextPoint, previousPoint );
if ( normal1.dot( tempV2_3 ) < 0 ) {
joinIsOnLeftSide = false;
}
if ( iPoint === 1 ) initialJoinIsOnLeftSide = joinIsOnLeftSide;
tempV2_3.subVectors( nextPoint, currentPoint );
tempV2_3.normalize();
var dot = Math.abs( normal1.dot( tempV2_3 ) );
// If path is straight, don't create join
if ( dot !== 0 ) {
// Compute inner and outer segment intersections
var miterSide = strokeWidth2 / dot;
tempV2_3.multiplyScalar( - miterSide );
tempV2_4.subVectors( currentPoint, previousPoint );
tempV2_5.copy( tempV2_4 ).setLength( miterSide ).add( tempV2_3 );
innerPoint.copy( tempV2_5 ).negate();
var miterLength2 = tempV2_5.length();
var segmentLengthPrev = tempV2_4.length();
tempV2_4.divideScalar( segmentLengthPrev );
tempV2_6.subVectors( nextPoint, currentPoint );
var segmentLengthNext = tempV2_6.length();
tempV2_6.divideScalar( segmentLengthNext );
// Check that previous and next segments doesn't overlap with the innerPoint of intersection
if ( tempV2_4.dot( innerPoint ) < segmentLengthPrev && tempV2_6.dot( innerPoint ) < segmentLengthNext ) {
innerSideModified = true;
}
outerPoint.copy( tempV2_5 ).add( currentPoint );
innerPoint.add( currentPoint );
isMiter = false;
if ( innerSideModified ) {
if ( joinIsOnLeftSide ) {
nextPointR.copy( innerPoint );
currentPointR.copy( innerPoint );
} else {
nextPointL.copy( innerPoint );
currentPointL.copy( innerPoint );
}
} else {
// The segment triangles are generated here if there was overlapping
makeSegmentTriangles();
}
switch ( style.strokeLineJoin ) {
case 'bevel':
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
break;
case 'round':
// Segment triangles
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );
// Join triangles
if ( joinIsOnLeftSide ) {
makeCircularSector( currentPoint, currentPointL, nextPointL, u1, 0 );
} else {
makeCircularSector( currentPoint, nextPointR, currentPointR, u1, 1 );
}
break;
case 'miter':
case 'miter-clip':
default:
var miterFraction = ( strokeWidth2 * style.strokeMiterLimit ) / miterLength2;
if ( miterFraction < 1 ) {
// The join miter length exceeds the miter limit
if ( style.strokeLineJoin !== 'miter-clip' ) {
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
break;
} else {
// Segment triangles
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );
// Miter-clip join triangles
if ( joinIsOnLeftSide ) {
tempV2_6.subVectors( outerPoint, currentPointL ).multiplyScalar( miterFraction ).add( currentPointL );
tempV2_7.subVectors( outerPoint, nextPointL ).multiplyScalar( miterFraction ).add( nextPointL );
addVertex( currentPointL, u1, 0 );
addVertex( tempV2_6, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_6, u1, 0 );
addVertex( tempV2_7, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_7, u1, 0 );
addVertex( nextPointL, u1, 0 );
} else {
tempV2_6.subVectors( outerPoint, currentPointR ).multiplyScalar( miterFraction ).add( currentPointR );
tempV2_7.subVectors( outerPoint, nextPointR ).multiplyScalar( miterFraction ).add( nextPointR );
addVertex( currentPointR, u1, 1 );
addVertex( tempV2_6, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_6, u1, 1 );
addVertex( tempV2_7, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_7, u1, 1 );
addVertex( nextPointR, u1, 1 );
}
}
} else {
// Miter join segment triangles
if ( innerSideModified ) {
// Optimized segment + join triangles
if ( joinIsOnLeftSide ) {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( outerPoint, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( outerPoint, u1, 0 );
addVertex( innerPoint, u1, 1 );
} else {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( outerPoint, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( outerPoint, u1, 1 );
}
if ( joinIsOnLeftSide ) {
nextPointL.copy( outerPoint );
} else {
nextPointR.copy( outerPoint );
}
} else {
// Add extra miter join triangles
if ( joinIsOnLeftSide ) {
addVertex( currentPointL, u1, 0 );
addVertex( outerPoint, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( outerPoint, u1, 0 );
addVertex( nextPointL, u1, 0 );
} else {
addVertex( currentPointR, u1, 1 );
addVertex( outerPoint, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( outerPoint, u1, 1 );
addVertex( nextPointR, u1, 1 );
}
}
isMiter = true;
}
break;
}
} else {
// The segment triangles are generated here when two consecutive points are collinear
makeSegmentTriangles();
}
} else {
// The segment triangles are generated here if it is the ending segment
makeSegmentTriangles();
}
if ( ! isClosed && iPoint === numPoints - 1 ) {
// Start line endcap
addCapGeometry( points[ 0 ], point0L, point0R, joinIsOnLeftSide, true, u0 );
}
// Increment loop variables
u0 = u1;
previousPoint = currentPoint;
lastPointL.copy( nextPointL );
lastPointR.copy( nextPointR );
}
if ( ! isClosed ) {
// Ending line endcap
addCapGeometry( currentPoint, currentPointL, currentPointR, joinIsOnLeftSide, false, u1 );
} else if ( innerSideModified && vertices ) {
// Modify path first segment vertices to adjust to the segments inner and outer intersections
var lastOuter = outerPoint;
var lastInner = innerPoint;
if ( initialJoinIsOnLeftSide !== joinIsOnLeftSide ) {
lastOuter = innerPoint;
lastInner = outerPoint;
}
if ( joinIsOnLeftSide ) {
lastInner.toArray( vertices, 0 * 3 );
lastInner.toArray( vertices, 3 * 3 );
if ( isMiter ) {
lastOuter.toArray( vertices, 1 * 3 );
}
} else {
lastInner.toArray( vertices, 1 * 3 );
lastInner.toArray( vertices, 3 * 3 );
if ( isMiter ) {
lastOuter.toArray( vertices, 0 * 3 );
}
}
}
return numVertices;
// -- End of algorithm
// -- Functions
function getNormal( p1, p2, result ) {
result.subVectors( p2, p1 );
return result.set( - result.y, result.x ).normalize();
}
function addVertex( position, u, v ) {
if ( vertices ) {
vertices[ currentCoordinate ] = position.x;
vertices[ currentCoordinate + 1 ] = position.y;
vertices[ currentCoordinate + 2 ] = 0;
if ( normals ) {
normals[ currentCoordinate ] = 0;
normals[ currentCoordinate + 1 ] = 0;
normals[ currentCoordinate + 2 ] = 1;
}
currentCoordinate += 3;
if ( uvs ) {
uvs[ currentCoordinateUV ] = u;
uvs[ currentCoordinateUV + 1 ] = v;
currentCoordinateUV += 2;
}
}
numVertices += 3;
}
function makeCircularSector( center, p1, p2, u, v ) {
// param p1, p2: Points in the circle arc.
// p1 and p2 are in clockwise direction.
tempV2_1.copy( p1 ).sub( center ).normalize();
tempV2_2.copy( p2 ).sub( center ).normalize();
var angle = Math.PI;
var dot = tempV2_1.dot( tempV2_2 );
if ( Math.abs( dot ) < 1 ) angle = Math.abs( Math.acos( dot ) );
angle /= arcDivisions;
tempV2_3.copy( p1 );
for ( var i = 0, il = arcDivisions - 1; i < il; i ++ ) {
tempV2_4.copy( tempV2_3 ).rotateAround( center, angle );
addVertex( tempV2_3, u, v );
addVertex( tempV2_4, u, v );
addVertex( center, u, 0.5 );
tempV2_3.copy( tempV2_4 );
}
addVertex( tempV2_4, u, v );
addVertex( p2, u, v );
addVertex( center, u, 0.5 );
}
function makeSegmentTriangles() {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 1 );
addVertex( currentPointR, u1, 0 );
}
function makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u ) {
if ( innerSideModified ) {
// Optimized segment + bevel triangles
if ( joinIsOnLeftSide ) {
// Path segments triangles
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 0 );
addVertex( innerPoint, u1, 1 );
// Bevel join triangle
addVertex( currentPointL, u, 0 );
addVertex( nextPointL, u, 0 );
addVertex( innerPoint, u, 0.5 );
} else {
// Path segments triangles
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPointR, u1, 1 );
// Bevel join triangle
addVertex( currentPointR, u, 1 );
addVertex( nextPointR, u, 0 );
addVertex( innerPoint, u, 0.5 );
}
} else {
// Bevel join triangle. The segment triangles are done in the main loop
if ( joinIsOnLeftSide ) {
addVertex( currentPointL, u, 0 );
addVertex( nextPointL, u, 0 );
addVertex( currentPoint, u, 0.5 );
} else {
addVertex( currentPointR, u, 1 );
addVertex( nextPointR, u, 0 );
addVertex( currentPoint, u, 0.5 );
}
}
}
function createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ) {
if ( innerSideModified ) {
if ( joinIsOnLeftSide ) {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 0 );
addVertex( innerPoint, u1, 1 );
addVertex( currentPointL, u0, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( innerPoint, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( nextPointL, u0, 0 );
addVertex( innerPoint, u1, 1 );
} else {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( currentPointR, u0, 1 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( innerPoint, u1, 0 );
addVertex( nextPointR, u0, 1 );
}
}
}
function addCapGeometry( center, p1, p2, joinIsOnLeftSide, start, u ) {
// param center: End point of the path
// param p1, p2: Left and right cap points
switch ( style.strokeLineCap ) {
case 'round':
if ( start ) {
makeCircularSector( center, p2, p1, u, 0.5 );
} else {
makeCircularSector( center, p1, p2, u, 0.5 );
}
break;
case 'square':
if ( start ) {
tempV2_1.subVectors( p1, center );
tempV2_2.set( tempV2_1.y, - tempV2_1.x );
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );
// Modify already existing vertices
if ( joinIsOnLeftSide ) {
tempV2_3.toArray( vertices, 1 * 3 );
tempV2_4.toArray( vertices, 0 * 3 );
tempV2_4.toArray( vertices, 3 * 3 );
} else {
tempV2_3.toArray( vertices, 1 * 3 );
tempV2_3.toArray( vertices, 3 * 3 );
tempV2_4.toArray( vertices, 0 * 3 );
}
} else {
tempV2_1.subVectors( p2, center );
tempV2_2.set( tempV2_1.y, - tempV2_1.x );
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );
var vl = vertices.length;
// Modify already existing vertices
if ( joinIsOnLeftSide ) {
tempV2_3.toArray( vertices, vl - 1 * 3 );
tempV2_4.toArray( vertices, vl - 2 * 3 );
tempV2_4.toArray( vertices, vl - 4 * 3 );
} else {
tempV2_3.toArray( vertices, vl - 2 * 3 );
tempV2_4.toArray( vertices, vl - 1 * 3 );
tempV2_4.toArray( vertices, vl - 4 * 3 );
}
}
break;
case 'butt':
default:
// Nothing to do here
break;
}
}
function removeDuplicatedPoints( points ) {
// Creates a new array if necessary with duplicated points removed.
// This does not remove duplicated initial and ending points of a closed path.
var dupPoints = false;
for ( var i = 1, n = points.length - 1; i < n; i ++ ) {
if ( points[ i ].distanceTo( points[ i + 1 ] ) < minDistance ) {
dupPoints = true;
break;
}
}
if ( ! dupPoints ) return points;
var newPoints = [];
newPoints.push( points[ 0 ] );
for ( var i = 1, n = points.length - 1; i < n; i ++ ) {
if ( points[ i ].distanceTo( points[ i + 1 ] ) >= minDistance ) {
newPoints.push( points[ i ] );
}
}
newPoints.push( points[ points.length - 1 ] );
return newPoints;
}
};
}();